
Multiple View Geometry: Exercise Sheet 4
Prof. Dr. Daniel Cremers, Julia Diebold, Jakob Engel, TU Munich
http://vision.in.tum.de/teaching/ss2014/mvg2014

Exercise: May 12th, 2014

Part I: Theory

The following exercises should be solved at home. You do not have to hand in your solutions, how-
ever, writing it down will help you present your answer during the tutorials.

Image Formation

1. A classic ambiguity of the perspective projection is that one cannot tell an object from another
object that is exactly twice as big but twice as far. Explain why this is true.

2. Consider a 3D reconstruction of a single point p = (0 0 4)>. The point is observed by two
cameras given by the following projection matrices:

P1 =

1 0 0 −3
0 1 0 0
0 0 1 0

 P2 =

1 0 0 1
0 1 0 0
0 0 1 0


Compute the images p̃1 and p̃2 of the point p after projection for camera 1 and 2, respectively.

Radial Distortion
A general projection model for radially distorted cameras is generic projection followed by a non-
linear transformation of the radius for each image point.
The calibrated projection function π1 : R3 → Ω1 ⊂ R2 projects a 3D point p in the camera coordinate
system to pixel coordinates p̃ and is given by

p̃ := π1(p) = K ·
(
f(||π(p)||) · π(p)

1

)
. (1)

Here, π denotes the generic perspective projection π((x, y, z)T) := (xz ,
y
z)T , and K ∈ R3×3 is the

intrinsic parameter matrix. The function f : R+ → R
+ determines the radial distortion factor (r :=

||π(p)|| = distance to principal point), and is typically approximated by some parametric function
(e.g. a polynomial).

1. can this model be used for lenses with a field of view of more than 180◦?

2. what might be the advantage of using only even powers of r, i.e., f(r) = 1 + a1r
2 + a2r

4, as
supposed to a more general fourth order polynomial f(r) = 1 + a1r + a2r

2 + a3r
3 + a4r

4?

1

Part II: Practical Exercises

This exercise is to be solved during the tutorial.

Image Formation

1. Consider the 3D model model.off from the second exercise sheet (contained in the package
ex2.zip) and a camera centered at C = (0, 0,−1)> with focal length f = 1.

(a) Compute the perspective projection of the model using a homogeneous projection ma-
trix. To this end, you need to transform the list of vertices returned by openOFF into
homogeneous coordinates.

(b) Consider a parallel projection where the projection rays are parallel to the z-axis. What is
the corresponding projection matrix? Use this matrix to project the model onto the image
plane.

Radial Distortion
In this exercise you will compute a rectified image from a radially distorted image. Given an image
I1 : Ω1 → R with calibrated projection function π1 : R3 → Ω1, this corresponds to computing a new,
virtual image Iu1 : Ωu1 → R with identical focal point and a (arbitrarily defined) pinhole projection
function πu1 : R3 → Ωu1 .

1. Download ex4.zip, containing two images. The projection function π1 of img1.jpg is
calibrated according to Eq. (1), with

K1 =

388.6 0 343.7
0 389.4 234.6
0 0 1

 ,

f1(r) =
1

0.926r
atan

(
2r tan

(
0.926

2

))
.

Load the image using I1 = imreadbw(’img1.jpg’);, and display it using imagesc(I1);.
Change the colormap to grayscale, using colormap gray;

Note how straight lines in the scene appear as curved lines in the image.

2. Compute a virtual, rectified image Iu1 of dimensions 1024 × 768, with a projection function
according to a pinhole camera model and intrinsic parameters

Ku :=

250 0 512
0 250 384
0 0 1


The intensity Iu1(p̃) at p̃ ∈ Ωu1 is computed by first un-projecting p̃ (assuming a fixed depth
of 1), projecting it into I1, and interpolating the intensity at the projected position, that is

Iu1(p̃) = I1(π1(K
−1
u

(
p̃
1

)
))

Use interp2 for bilinear interpolation (for efficiency first accumulate all projected point po-
sitions in temporary arrays, and then call interp2 once). Note that the coordinates of the
top-left pixel are (0,0).

Note how straight lines in the scene now appear as straight lines in the image.

2

3. Repeat (1) and (2) for img2.jpg. For this image, the projection function is given by

K2 =

279.7 0 347.3
0 279.7 235.0
0 0 1


f2(r) = 1− 0.3407r + 0.057r2 − 0.0046r3 + 0.00014r4

This image has been taken with a 180◦-fisheye lens, leading large distortions around the border
of the image.

4. Optional: Optimize your code to run in less than 1s (Hint: get rid of all loops, using point-wise
matlab expressions instead).

5. Optional: Now that your code is fast, play around with the resolution and intrinsic parameters
of the virtual image. What are their effects? Try to find intrinsic parameters such that the whole
virtual image is defined (no black borders), while retaining as much of the image as possible.

6. Optional (Advanced): compute a virtual image I ′2 from img2.jpg, which looks like it were
taken by a virtual camera at the same position and orientation as img2.jpg, but with the lens
(= projection function) from img1.jpg, i.e.:

I ′2(p̃) = I2(π2(π
−1
1 (

(
p̃
1

)
)))

For this you need to invert f1. Can you also change the orientation of the virtual camera?
(answer: yes). Can you also translate the virtual camera? (answer: no, not without knowledge
of the true 3D position of each point).

Similar methods can be used to compute virtual views of available 360◦ images, e.g. to interac-
tively view a panorama picture.

Info:
The first distortion model for img1.jpg is called the FOV or ATAN model, and is used e.g. in the
open-source implementation of PTAM (Parallel Tracking and Mapping). Its primary advantage is that
it is invertible in closed form. A polynomial approximation of f (of degree 4, as used for img2.jpg)
is often more general, but cannot be inverted in closed form; making it unsuited for some applications.
Which model is best generally depends on the specific lens and intended application.

Neither formulation allows for a field of view of more than 180◦. For cameras with a field of view of
more than 180◦, a different projection (e.g. stereographic or spherical projection) has to be used.

3

