

Multiple View Geometry: Exercise Sheet 7

Prof. Dr. Daniel Cremers, Julia Diebold, Jakob Engel, TU Munich

http://vision.in.tum.de/teaching/ss2014/mvg2014

Part II: Practical Exercises

In this exercise you will implement direct image alignment as Gauss-Newton minimization on $\mathrm{SE}(3)$. Download the package mvg_exerciseSheet_07. zip provided on the website. It contains a codeframework, test-images and the corresponding camera calibration.

1. Implement a function [Id, Dd, Kd] = downscale (I, D, K) which halves the image resolution of the image I, the depth map D and adjusts the corresponding Camera matrix K (see slides). For the intensity image, downscaling is performed by averaging the intensity, that is

$$
\begin{equation*}
I_{d}(x, y):=0.25 \sum_{x^{\prime}, y^{\prime} \in O(x, y)} I\left(x^{\prime}, y^{\prime}\right) \tag{1}
\end{equation*}
$$

where $O(x, y)=\{(2 x, 2 y),(2 x+1,2 y),(2 x, 2 y+1),(2 x+1,2 y+1)\}$.
For the depth map, downscaling is performed by averaging the inverse depth of all valid pixels (invalid depth values are set to zero), that is

$$
\begin{equation*}
D_{d}(x, y):=\left(\left(\sum_{x^{\prime}, y^{\prime} \in O_{d}(x, y)} D\left(x^{\prime}, y^{\prime}\right)^{-1}\right) /\left|O_{d}(x, y)\right|\right)^{-1} \tag{2}
\end{equation*}
$$

where $O_{d}(x, y):=\left\{\left(x^{\prime}, y^{\prime}\right) \in O(x, y): D\left(x^{\prime}, y^{\prime}\right) \neq 0\right\}$.
2. Implement a function $r=\operatorname{calcErr}(I 1, D 1, I 2, x i, K)$ that takes the images and their (assumed) relative pose, and calculates the per-pixel residual $\mathbf{r}(\xi)$ as defined in the slides (r should be a $n \times 6$ vector, where n is the number of valid (with depth and not out of bounds). Visualize the residual as image for $\xi=\mathbf{0}$. Hint: work on a coarse version of the image (e.g. 160×120) to make it run faster.
3. Implement a function $J=$ deriveNumeric (I1, $D 1, ~ I 2$, xi, K) that numerically derives $\mathbf{r}(\xi)$. J should be a $n \times 6$ matrix) pixels in the image.
4. Implement Gauss Newton minimization for the photometric error $E(\xi)=\|\mathbf{r}(\xi)\|_{2}^{2}$ as derived in the slides. Use only one pyramid level (160×120) in the beginning, and then add the remaining levels. You should get $\xi \approx(-0.002,0.006,0.037,-0.029,-0.018,-0.001)^{T}$
5. Implement a function $J=$ deriveAnalytic (I1, D1, I2, xi, K) which analytically derives $\mathbf{r}(\xi)$ (see slides). Use it instead of the numeric derivatives in the minimization from the previous task. It should give you a significant speed-up.
6. Bonus: Add Huber weights.

