
Multiple View Geometry: Exercise Sheet 7
Prof. Dr. Daniel Cremers, Julia Diebold, Jakob Engel, TU Munich
http://vision.in.tum.de/teaching/ss2014/mvg2014

Exercise: June 2th, 2014

Part II: Practical Exercises

In this exercise you will implement direct image alignment as Gauss-Newton minimization on SE(3).
Download the package mvg exerciseSheet 07.zip provided on the website. It contains a code-
framework, test-images and the corresponding camera calibration.

1. Implement a function [Id,Dd,Kd] = downscale(I,D,K) which halves the image res-
olution of the image I , the depth map D and adjusts the corresponding Camera matrix K (see
slides). For the intensity image, downscaling is performed by averaging the intensity, that is

Id(x, y) := 0.25
∑

x′,y′∈O(x,y)

I(x′, y′) (1)

where O(x, y) = {(2x, 2y), (2x+ 1, 2y), (2x, 2y + 1), (2x+ 1, 2y + 1)}.
For the depth map, downscaling is performed by averaging the inverse depth of all valid pixels
(invalid depth values are set to zero), that is

Dd(x, y) :=

 ∑
x′,y′∈Od(x,y)

D(x′, y′)−1

/ |Od(x, y)|

−1 (2)

where Od(x, y) := {(x′, y′) ∈ O(x, y) : D(x′, y′) 6= 0}.

2. Implement a function r = calcErr(I1, D1, I2, xi, K) that takes the images and
their (assumed) relative pose, and calculates the per-pixel residual r(ξ) as defined in the slides
(r should be a n× 6 vector, where n is the number of valid (with depth and not out of bounds).
Visualize the residual as image for ξ = 0. Hint: work on a coarse version of the image (e.g.
160× 120) to make it run faster.

3. Implement a function J = deriveNumeric(I1, D1, I2, xi, K) that numerically
derives r(ξ). J should be a n× 6 matrix) pixels in the image.

4. Implement Gauss Newton minimization for the photometric errorE(ξ) = ||r(ξ)||22 as derived in
the slides. Use only one pyramid level (160×120) in the beginning, and then add the remaining
levels. You should get ξ ≈ (−0.002, 0.006, 0.037,−0.029,−0.018,−0.001)T

5. Implement a function J = deriveAnalytic(I1, D1, I2, xi, K) which analyti-
cally derives r(ξ) (see slides). Use it instead of the numeric derivatives in the minimization
from the previous task. It should give you a significant speed-up.

6. Bonus: Add Huber weights.

1

