Multiple View Geometry: Exercise Sheet 10

Prof. Dr. Daniel Cremers, Julia Diebold, Jakob Engel, TU Munich
http://vision.in.tum.de/teaching/ss2014/mvg2014

Exercise: June 30th, 2014

Part I: Theory

The following exercises should be solved at home. You do not have to hand in your solutions, however, writing it down will help you present your answer during the tutorials.

1. Compute the gradient descent equations for the following two functionals:
(a)

$$
E_{1}(u)=\frac{\lambda}{2} \int_{\Omega}(u(x)-f(x))^{2} d x+\frac{1}{2} \int_{\Omega}|\nabla u(x)|^{2} d x
$$

(b)

$$
E_{2}(u)=\frac{\lambda}{2} \int_{\Omega}(u(x)-f(x))^{2} d x+\int_{\Omega}|\nabla u(x)| d x
$$

where $\Omega \subset \mathbb{R}^{2}, \lambda>0$ and $f, u: \Omega \rightarrow \mathbb{R}$.

Hint:

- E has the form: $E(u)=\int \mathcal{L}\left(u, u^{\prime}\right) d x$
- Determine the Euler-Lagrange equation: $\frac{d E}{d u}=\frac{\partial \mathcal{L}}{\partial u}-\frac{d}{d x} \frac{\partial \mathcal{L}}{\partial u^{\prime}}$.
- Use: $-\frac{d E}{d u}=\frac{\partial u}{\partial t}=\frac{u^{t+1}-u^{t}}{\tau}$, where τ is the stepsize to get the update scheme for u
- If you need to divide by $|\nabla u|$, use a regularized version of the gradient norm:
$|\nabla u|_{\varepsilon}=\sqrt{u_{x}^{2}+u_{y}^{2}+\varepsilon^{2}}$ for a small constant $\varepsilon \in \mathbb{R}_{>0}$.

Part II: Practical Exercises

This exercise is to be solved during the tutorial.

1. Download the Matlab files (mvg_exerciseSheet_10.zip) from the website.
2. Implement the gradient descent for E_{1}.
3. Implement the gradient descent for E_{2}.
