

Multiple View Geometry: Solution Exercise Sheet 1

Prof. Dr. Daniel Cremers, Julia Bergbauer, Jakob Engel, TU Munich
http://vision.in.tum.de/teaching/ss2014/mvg2014

Part I: Theory

1. To summarize:

	B_{1}	B_{2}	B_{3}
(1) Are linearly independent	yes	yes	no
(2) Span \mathbb{R}^{3}	yes	no	yes
(3) Form a basis of \mathbb{R}^{3}	yes	no	no

More details:

B_{1} : Can be shown by building a matrix and calculating the determinant: $\operatorname{det}\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right) \neq 0$.
As the determinant is not zero, we know that the vectors are linearly independent. Three linear independent vectors in \mathbb{R}^{3} span \mathbb{R}^{3}. Furthermore, three spanning vectors build a minimal set, hence, they also form a basis of \mathbb{R}^{3}.
$B_{2}:$ To span \mathbb{R}^{3}, there are at least three vectors needed.
$B_{3}:$ In \mathbb{R}^{3}, there cannot be more than three independent vectors.

2. To summarize:

	G_{1}	G_{2}	G_{3}
Form a group	no	no	yes

More details:

G_{1} : Closure not given!

$$
\underbrace{\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 0 & 4 \\
3 & 4 & 5
\end{array}\right)}_{\in G_{1}} \cdot \underbrace{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)}_{\in G_{1}}=\underbrace{\left(\begin{array}{ccc}
1 & 4 & 9 \\
2 & 0 & 12 \\
3 & 8 & 15
\end{array}\right)}_{\notin G_{1}}
$$

$G_{2}:$ Neutral element not included, as $\operatorname{det}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=1 \neq-1$
$G_{3}:$ Yes, as can easily be shown using $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.

3. To summarize: No.

More details (proof): Assuming the existence of four pairwise orthogonal, non-zero vectors $v_{1}, \ldots, v_{4} \in$ \mathbb{R}^{3}, we obtain a contradiction:

We know that, in \mathbb{R}^{3}, there are at most 3 linearly independent vectors. Hence, we know that $\exists a_{i}$: $\sum_{i=1}^{4} a_{i} v_{i}=0$, with at least one $a_{i} \neq 0$. Without loss of generality, we can assume that $a_{1}=1$, giving

$$
v_{1}=a_{2} v_{2}+a_{3} v_{3}+a_{4} v_{4}
$$

As the vectors are pairwise orthogonal, we can derive

$$
\begin{aligned}
\left\|v_{1}\right\|^{2} & =\left\langle v_{1}, v_{1}\right\rangle \\
& =\left\langle v_{1}, a_{2} v_{2}+a_{3} v_{3}+a_{4} v_{4}\right\rangle \\
& =\left\langle v_{1}, v_{2}\right\rangle a_{2}+\left\langle v_{1}, v_{3}\right\rangle a_{3}+\left\langle v_{1}, v_{4}\right\rangle a_{4}=0
\end{aligned}
$$

which contradicts $v_{1} \neq \mathbf{0}$.

Part I: Matlab

These are some possible solutions to the exercises from the Matlab introduction slides.

1. Exercise 1: There is a number of possibilities which do not require a loop, such as:

- out $=$ all (all(abs $(x-y)<e p s))$
- out $=\operatorname{sum}(\operatorname{sum}(a b s(x-y)>=e p s))==0$
- out $=\max (\operatorname{abs}(x-y))<e p s$
- out $=\max ((x-y) . *(x-y))<e p s * e p s$

2. Exercise 2: Again there are multiple possibilities:

- $A=s: e ;$
out $=$ sum(isprime (A) . . A A);
- $A=s: e ;$
out $=$ sum(A(isprime(A)));

