Multiple View Geometry: Solution Exercise Sheet 1

Prof. Dr. Daniel Cremers, Julia Bergbauer, Jakob Engel, TU Munich http://vision.in.tum.de/teaching/ss2014/mvg2014

Part I: Theory

1. To summarize:

	B_1	B_2	B_3
(1) Are linearly independent	yes	yes	no
(2) Span \mathbb{R}^3	yes	no	yes
(3) Form a basis of \mathbb{R}^3	yes	no	no

More details:

 B_1 : Can be shown by building a matrix and calculating the determinant: $det \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \neq 0$.

As the determinant is not zero, we know that the vectors are linearly independent. Three linear independent vectors in \mathbb{R}^3 span \mathbb{R}^3 . Furthermore, three spanning vectors build a minimal set, hence, they also form a basis of \mathbb{R}^3 .

 B_2 : To span \mathbb{R}^3 , there are at least three vectors needed.

 B_3 : In \mathbb{R}^3 , there cannot be more than three independent vectors.

2. To summarize:

$$\begin{array}{c|cccc} & G_1 & G_2 & G_3 \\ \hline \text{Form a group} & \text{no} & \text{no} & \text{yes} \\ \end{array}$$

More details:

 G_1 : Closure not given!

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & 4 \\ 3 & 4 & 5 \end{pmatrix}}_{\in G_1} \cdot \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}}_{\in G_1} = \underbrace{\begin{pmatrix} 1 & 4 & 9 \\ 2 & 0 & 12 \\ 3 & 8 & 15 \end{pmatrix}}_{\notin G_1}$$

 G_2 : Neutral element not included, as $det \left(egin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}
ight) = 1
eq -1$

 G_3 : Yes, as can easily be shown using $det(A^{-1}) = \frac{1}{det(A)}$.

3. To summarize: No.

More details (proof): Assuming the existence of four pairwise orthogonal, non-zero vectors $v_1, \ldots, v_4 \in \mathbb{R}^3$, we obtain a contradiction:

We know that, in \mathbb{R}^3 , there are at most 3 linearly independent vectors. Hence, we know that $\exists a_i : \sum_{i=1}^4 a_i v_i = 0$, with at least one $a_i \neq 0$. Without loss of generality, we can assume that $a_1 = 1$, giving

$$v_1 = a_2 v_2 + a_3 v_3 + a_4 v_4$$

As the vectors are pairwise orthogonal, we can derive

$$||v_1||^2 = \langle v_1, v_1 \rangle$$

= $\langle v_1, a_2 v_2 + a_3 v_3 + a_4 v_4 \rangle$
= $\langle v_1, v_2 \rangle a_2 + \langle v_1, v_3 \rangle a_3 + \langle v_1, v_4 \rangle a_4 = 0$,

which contradicts $v_1 \neq \mathbf{0}$.

Part I: Matlab

These are some possible solutions to the exercises from the Matlab introduction slides.

- 1. Exercise 1: There is a number of possibilities which do not require a loop, such as:
 - out = all(all(abs(x-y) < eps))
 - out = sum(sum(abs(x-y) >= eps)) == 0
 - out = max(abs(x-y)) < eps
 - out = $max((x-y) \cdot (x-y)) < eps*eps$
- 2. Exercise 2: Again there are multiple possibilities:
 - A = s:e;
 out = sum(isprime(A) .* A);
 - A = s:e;
 out = sum(A(isprime(A)));