Recent Advances in the Analysis of 3D Shapes

Preparation Meeting

Daniel Cremers Emanuele Rodolà Matthias Vestner Thomas Windheuser

What You Will Learn in the Seminar

- Get an overview on current trends in 3D shape analysis
- Read and understand scientific publications
- Write a scientific report
- Prepare and give a talk

Important Dates

- First meeting: 28.01.2014 (today)
- Fix assignment of papers and date
- Weekly presentation starting on Wednesday 16.04.2014
- Read and discuss your assigned topic with your supervisor early
- Deliver and discuss your slides and the report one week before your presentation

Preparation

Please do not work on your topic completely alone

- Meet at least **twice** with your supervisor
- We recommend to meet your supervisor and discuss your topic **one month before your talk**
- One week before your talk: Deliver the report and slides to your supervisor. Meet your supervisor and discuss your slides.

Report

- Report should contain an overview and the main contributions of your assignment
- Recommended length: 6-8 pages
- Required length: Minimum 6 pages
 Maximum 10 pages
- Language: English or German (or Italian)
- Write your Report with Latex Template available on the web page
- Send PDF via email to your supervisor

Presentation

- 40 minutes + 10 minutes for discussion
- Don't put too much information on one slide 1-2 minutes per slide, about 30-40 slides
- Language: English
- Recommended structure
 - 1. Introduction, problem motivation, outline
 - 2. Approach
 - [3. Experimental Results]
 - 4. Discussion
 - 5. Summary (of scientific contributions)

Presentation

- You are free to choose your presentation software (Powerpoint, OOImpress, ...)
- For discussion with your supervisor you need to export into PDF

Evaluation Criteria

- Gained expertise in the topic
- Quality of your talk
- Quality of the report
- Active participation in the seminar is required (ask questions, comment talks)

Regular Attendance Is Required

- Attendance at each appointment is necessary
- In case of absence: Medical attest

Overview of Available Topics

Analysis of 3D Shapes

Laplace Beltrami Operator [Textbooks]

- Signal processing on manifolds
- Invariance to isometric deformations

Discrete Differential-Geometry [Meyer, Desbrun, Schröder, Barr]

- Approximating normal vectors and curvatures on triangular meshes
- Presentation April 23rd

Analysis of 3D Shapes

The Heat Kernel Signature [Sun, Ovsjanikov, Guibas]

- Multi-scale feature descriptor
- Describes the diffusion of heat
- Presentation April 30th

The Wave Kernel Signature [Aubry, Schlickewei, Cremers]

- Multi-scale feature descriptor
- Describes behavior of quantum particles
- Presentation on May 7th

Analysis of 3D Shapes

Functional Maps

[Ovsjanikov, Ben-Chen, Solomon, Butscher, Guibas]

- Instead of points functions are mapped between shapes
- Functions are represented in the Laplace-Beltrami-Operators' Eigenbasis
- Presentation on May 14th

Analysis of 3D Shapes

Computer Vision Group, TUM

-D 4

-n e

_n s

Generalized Multidimensional Scaling [Bronstein, Bronstein, Kimmel, 2006]

- Shapes are viewed as metric spaces
- We look for the least metric distortion embedding one surface into the other
- Presentation on May 21

Analysis of 3D Shapes

The Metric Approach to Shape Matching [Mémoli, 2007]

camel

elephant

cat

face

head

horse

lion

camel

cat elephant

- Objects are viewed as metric-measure spaces
- A notion of distance among shapes is defined
- Presentation on May 28

face head horse lion 0.09

0.08

0.07 0.06

0.05

0.04

0.03 0.02

0.01

Blended Intrinsic Maps [Kim, Lipman, Funkhouser, 2011]

- Given a collection of nearly-isometric maps in input, combine them to produce a better map
- Conformal maps are considered as an input
- The approach allows comparing cats to giraffes
- Presentation on June 4

Diffeomorphic Matching [Litke, Droske, Rumpf, Schröder, 2005]

- Match two shapes by a diffeomorphism
- Use image processing methods for optimization
- Presentation on June 11

LP Relaxation for Elastic Matching [Windheuser, Schlickewei, Schmidt, Cremers, 2011]

 Match two shapes by a diffeomorphism

- Use linear programming for optimization
- Presentation on June 18

Analysis of 3D Shapes

Y

Riemannian Shape Analysis [Kurtek, Klassen, Ding, Srivastava, 2010] $D = [0, 1]^2$ $f_2 \circ \gamma^*$ f_1 f_2 0.114 0.1 0.105 0.1 0.095 0.09 $D = \mathbb{S}^2$

- Represent shapes as "q-maps"
- Gradient based optimization.
- Presentation on June 25

D =unit disk

Analysis of 3D Shapes

Time-Discrete Geodesics in Shape Space [Heeren, Rumpf, Wardetzky, Wirth, 2012]

- Physics based deformation model
- Deformation is a path in shape space
- Presentation on July 2

Analysis of 3D Shapes

- An optimal descriptor can be computed for a given collection of shapes
- The learning approach is based on signal processing
- Presentation on July 09