

Depth-Adaptive Superpixels

Jan Möller Robert Posch

Technische Universität München Department of Informatics Computer Vision Group

October 5, 2015

Outline

- **2** Superpixel Algorithms
- **3** CUDA Implementation
- 4 Conclusion and Future Work

Outline

- 2 Superpixel Algorithms
- **3** CUDA Implementation
- 4 Conclusion and Future Work

Computer Vision Group

- Subdivide image into meaningful regions (superpixels)
- Performance criteria:
 - Spatial proximity
 - Color similarity
 - Adherence to edges
 - Structural resemblance
 - Run time
- Approach by modified k-means algorithm

[Achanta et al., 2012]

- 2 Superpixel Algorithms
- 4 Conclusion and Future Work

ische Universität München

Simple Linear Iterative Clustering (SLIC)

- Generate a cluster seed for each superpixel
- Cluster seeds have position and color
- For each pixel compute distance to closest cluster
- Distance function has terms for
 - spatial distance
 - color distance
- Re-compute cluster-position and -color by averaging over affiliated pixels
- Iterate with new values
- Speed-up by only considering small window around cluster

[Achanta et al., 2012]

Simple Linear Iterative Clustering (SLIC)

Search window during distance computation

Simple Linear Iterative Clustering (SLIC)

- Pro:
 - Produces similar-sized superpixels
 - Good color adherence
 - Faster than similar algorithms
- Con:
 - Needs post-processing step to make sure pixels are connected with cluster center
 - No structural resemblance

[Achanta et al., 2012]

Depth-Adaptive Superpixels

- Incorporates 3D information into algorithm
- Computes density image from depth gradients
 - High density in distant and perspectively deformed areas
 - Cluster seeds are distributed with respect to density
- Spawns more cluster seeds in high-density regions
- Computes normal vectors from depth gradients
- Adds normal-term to distance function
- Update step similar to SLIC

[Weikersdorfer et al., 2012, Weikersdorfer, 2013]

Computer Vision Group

Overview

Depth-Adaptive Superpixels

Pro:

- Superpixel shape respects 3D objects
- Doesn't completely rely on color
- Con:
 - Non-trivial cluster generation
 - Speed deficit

[Weikersdorfer et al., 2012, Weikersdorfer, 2013]

- **CUDA** Implementation 3
- 4 Conclusion and Future Work

ische Universität München

GPU Implementation

- Density computation is well posed for parallelization
- Algorithm used for seed generation inherently sequential
 - Uses Floyd-Steinberg dithering
 - By computing on CPU additional memory transfers necessary
 - Can be hidden by parallel execution
- Distance computation challenging
 - Start a kernel for each cluster in parallel
 - Dynamically calculate search window size
 - Race conditions with overlapping windows

Reminder: SLIC

Search window during distance computation

Race conditions

Overlapping windows cause race conditions

Use of atomicMin

- Use atomicMin to avoid race conditions
 - Cluster index and distance need to be set at once
 - No mutexes in CUDA
- atomicMin only defined for integer data types
- Align distance and index such that they can be represented by a single 64-bit integer
- First four bytes determine the outcome of minimum operation
 - Store distance into the first four bytes
 - Store cluster index into last four bytes

Live Demo

Jan Möller, Robert Posch: Depth-Adaptive Superpixels

Outline

- 2 Superpixel Algorithms
- **3** CUDA Implementation
- 4 Conclusion and Future Work

Performance Comparision

Conclusion

Computer Vision Group

- Atomics don't necessarily have a big performance impact
- Simple algorithms may not easily transfer to massively parallel architectures
- Organization of spatial data can be challenging if it doesn't follow a trivial alignment

Future Work

- Ensure pixels are connected to affiliated cluster center
- Cluster seed generation on GPU
- Further optimization

Bibliography I

[Achanta et al., 2012] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Süsstrunk, S. (2012). Slic superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence.

[Weikersdorfer, 2013] Weikersdorfer, D. (2013). Efficiency by Sparsity: Depth-Adaptive Superpixels and Event-based SLAM. Dissertation, Technische Universität München.

[Weikersdorfer et al., 2012] Weikersdorfer, D., Gossow, D., and Beetz, M. (2012). Depth-adaptive superpixels. IEEE International Conference on Pattern Recognition.