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Introduction

Reconstruct 3D voxel grid from multiple input frames

Frames consist of color (RGB) and depth images

Must be fast enough to use in real-time with a Kinect (or a
similar sensor)
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The Pipeline

Bilateral
Filter

Calculate
Normals ICP

TSDF
Integration Raycasting

t + 1
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Transformations between the different coordinate systems
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Truncated Signed Distance Function (TSDF)

Get distance of the corresponding pixel of each voxel within
the voxel grid

Subtract it from the distance of the voxel itself and divide by
the truncation threshold

Update TSDF and color values in global memory
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Weighting of Color and Depth Values

Bad samples exist and must be weighted accordingly

Idea: use angle of incidence – lower angles usually correspond
to better samples

Implementation: multiply by z-coordinate of normal

Camera

Surface

~n
θ

(a) Good sample

Camera

Surface

~n
θ

(b) Bad sample
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Adaptive Raycasting

Cast a ray for each pixel of the picture being rendered

Take a step in z-direction and transform coordinates to voxel
grid

Check TSDF value (using trilineal interpolation); if
zero-crossing (= edge) was detected, use increasingly smaller
step size until we are as close to zero as possible

Write color value (using trilinear interpolation) to picture

Algorithm does not include lighting or shadows
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Normal Calculation using PCA

Ideal for a more robust approach to calculate normals

Combination of k-d tree and PCA

Not used in final version due to large performance hit (CPU
implementation) and only negligible improvements

(a) k-d tree (b) PCA
Figure: Robust Normal Estimation
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Results
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Results – different color weighting methods

(a) Exponential falloff (b) Linear falloff

(c) No falloff
Martin Herrmann Simon Trendel Neeraj Sujan: TSDF Volume Reconstruction 14 / 19



Computer Vision Group

Results
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Results
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Thank you
for your attention!
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