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This Course 

  Parallel Programming with CUDA 

  Computer Vision Basics 
image filtering (convolution, diffusion, denoising) 
basic algorithms 
regularization (dealing with noise) 

Optimization + Numerics 



Course Goals 

  Learn how to program massively parallel 
processors and achieve 

  high performance 
  functionality and maintainability 
  scalability across future generations 

  Acquire technical knowledge required to achieve 
above goals 

  principles and patterns of parallel programming 
  processor architecture features and constraints 
  programming API, tools and techniques 

  Apply this knowledge to implement computer 
 vision algorithms efficiently 



Course Timeline: 07.09. – 06.10. 

  September 7-11 (this week) : Lecture 
  2-4h lectures (attendance mandatory) 

programming exercises 
groups of 2-3 students 

  September 12-October 4: Student project 
advanced applications 
unsupervised  

October 5-6: Presentations 



Lecture Week 

Lecture 
starts at 10:00 sharp each day 
attendance mandatory to pass the course 

Exercises 
until 18:00 each day 
groups of 2-3 students 
present solutions 

    on next day after the lecture 
 



“Work @ Home” ™ 

You can access your computer remotely: 

 ssh –X p123@atradig789.informatik.tu-muenchen.de 

  p123: replace with your login 
  atradig789: replace with your computer name 

  type  hostname to find out the name  

  Works from within Linux or Mac 
for Mac: install XQuartz first (X11 server) 



Why Massively Parallel Processing? 

  A quiet revolution: Performance!  
  computations: TFLOPs vs. 100 GFLOPs 

 
  GPU in every PC – massive volume & impact 



Why Massively Parallel Processing? 

  A quiet revolution: Performance! 
  bandwidth: ~5x 

 
  GPU in every PC – massive volume & impact 



Serial Performance Scaling is Over 

  Cannot continue to scale processor frequencies 
  no 10 GHz chips 

 
  Cannot continue to increase power consumption 

  can’t melt chip 

  Can continue to increase transistor density 
  as per Moore’s Law 



How to Use Transistors? 

  Larger caches … decreasing 

  Instruction-level parallelism … decreasing 
  out-of-order execution, speculation, … 

 
  Data-level parallelism … increasing 

  vector units, SIMD execution, … 
  Intel SSE, GPUs, … 

  Thread-level parallelism … increasing 
  multithreading, multicore, manycore 



Design Difference: CPU vs. GPU 

  Different goals produce different designs 
  CPU must be good at everything, parallel or not  
  GPU assumes work load is highly parallel 

  CPU: minimize latency experienced by 1 thread 
  big on-chip caches 
  sophisticated control logic 

 
 
 
 

  GPU: maximize throughput of all threads 
  skip big caches, multithreading hides latency 
  share control logic across many threads, SIMD 
  create and run thousands of threads 



Design Difference: CPU vs. GPU 

  Different goals produce different designs 
  CPU must be good at everything, parallel or not  
  GPU assumes work load is highly parallel 

CPU 
minimize latency 

GPU 
maximize throughput 



Enter the GPU 

  Massively parallel 

Affordable supercomputing 



NVIDIA GPUs 

Compute Capability 
version number of the hardware architecture 
core architecture and incremental improvements 

Arch CC GPUs Features (e.g.) 
 

Tesla 
(2007) 

1.0 8800 GTX, Tesla C870 Basic functionality 
1.1 9800 GTX, Quadro FX 580 Atomics in global mem 
1.2 GT 240, Quadro FX 1800M Atomics in shared mem 
1.3 GTX 285, Tesla C1060 Double precision 

  

Fermi 
(2010) 

2.0 GTX 480/580, Tesla C2070 Memory cache 
2.1 GTX 460, GTX 560 Ti More cores (hardware) 

  

Kepler 
(2012) 

3.0 GTX 680/770, Tesla K10 Power efficiency, Many cores 
3.5 GTX 780/Titan, Tesla K20 Dynamic Parallelism, Hyper-Q 

Maxwell 
(2014) 

5.0 GTX 750, GTX 750 Ti 135% performance/core 
200% performance/watt 



NVIDIA GPUs 

Compute Capability 
version number of the hardware architecture 
core architecture and incremental improvements 

 
  List of features for each Compute Capability: 

  see NVIDIA Programming Guide: Appendix G.1 
 



NVIDIA GPUs: Current Architecture 

 

 
 
  5 multiprocessors (up to) 

  128 Cuda Cores per SM 
  640 Cores in total (up to) 

1st gen 
Maxwell 

GPU 



Enter CUDA 
(“Compute Unified Device Architecture“) 

  Scalable parallel programming model 
exposes the computational horsepower of GPUs 

Abstractions for parallel computing 
  let programmers focus on parallel algorithms 
  not mechanics of a parallel programming language 

 
  Minimal extensions to familiar C/C++ 
environment to run code on the GPU 

  low learning curve 

 



CUDA: Scalable Parallel Programming 

  Provide straightforward mapping onto hardware 
  good fit to GPU architecture 
  maps well to multi-core CPUs too 

  Execute code by many threads in parallel 

  Scale to 100s of cores & 10,000s of threads 
  GPU threads are lightweight — create / switch is free 
  GPU needs 1000s of threads for full utilization 



Reference: CUDA Programming Guide 

  CUDA comes with excellent documentation 
  doc/pdf  in the CUDA folder, have a look! 

  CUDA Programming Guide 
  one of the best CUDA references 
  covers every CUDA feature 
  provides in-depth explanations 

 
  Also: list of all CUDA functions: 

  CUDA_Runtime_API.pdf 



Outline of CUDA Basics 

  Kernels and Thread Hierarchy 
  Execution on the GPU 
  Memory Management 
  Error Handling And Compiling 

 

  See the Programming Guide for the full API 



BASIC KERNELS AND 
THREAD HIERARCHY 



CUDA Definitions 

  Device: GPU 
executes code in parallel 

  Host: CPU 
manages execution on the device 

  Kernel: C/C++ function executed on the device 
  executed by many threads 

each thread executes the same sequential program 
each thread is free to execute a unique code path 



Quick Example  

  CPU: Process subtasks serially one by one: 

  GPU: Process each subtask in its own thread: 

 
 

  launch enough threads to cover all data 

__global__ void vecAdd (float *a, float *b, float *c) 
{ 
    int i = threadIdx.x + blockDim.x * blockIdx.x; 
    c[i] = a[i] + b[i]; 
} 

for( int i=0; i<n; i++ ) 
{ 
    c[i] = a[i] + b[i]; 
} 
 
 

Each thread knows its index 



Thread Hierarchy 

  Kernel threads are grouped into blocks 
up to 512 or 1024 threads per block 

  Idea: Threads from the same block can cooperate 
  synchronize their execution 
  communicate via shared memory 

threads from different blocks cannot cooperate 

Allows transparent scaling to different GPUs 
  All kernel blocks together form a grid 



Thread Hierarchy 

  # threads per block: 
up to 512 (CC 1.x), 
up to 1024 (CC>=2.0) 

  Blocks can be 1D, 2D, or 3D 
Grids can be 1D, 2D, or 3D 

  CC 1.x: only 1D or 2D 

  Dimensions set at launch  
  can be different for each grid 



IDs and Dimensions 

  Threads: 
  3D IDs, unique within a block 

  Blocks: 
  3D IDs, unique within a grid 

  Built-in variables: 
threadIdx, blockIdx 
blockDim, gridDim 

 



Array Accesses: Index Calculation 

  Obtain unique array index from block/thread IDs 
threadIdx, blockIdx 
blockDim, gridDim 

 

0 1 2 3 4

0

0 1 2 3 4

1

0 1 2 3 4

2blockIdx.x 

threadIdx.x 

blockDim.x = 5 

threadIdx.x + blockDim.x*blockIdx.x 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 array index 



Kernel Launch 

Usual C/C++ function call, with an additional 
specification of grid and block sizes: 

 
   dim3 grid; dim3 block; 

  three ints: block.x, block.y, block.z 

  Kernel is launched by the CPU 
  CC >= 3.5: kernels can launch other kernels 

  Executed on the GPU 

mykernel <<< grid, block >>> (...); 



Example: One-dimensional Kernel 

__global__ void mykernel (int *a, int n) 
{ 
    int ind = threadIdx.x + blockDim.x * blockIdx.x; 
    if (ind<n) a[ind] = a[ind] + 1; 
} 
 
int main() 
{ 
    dim3 block = dim3(128,1,1);  // 128 threads 
    // ensure enough blocks to cover n elements (round up) 
    dim3 grid = dim3( (n + block.x – 1) / block.x, 1, 1); 
    mykernel <<<grid, block>>> (d_a, n); 
 
    // Also possible: 
    // launch 4 blocks, each with 128 threads 
    mykernel <<<4,128>>> (d_a, n); 
} 
 



Example: Two-dimensional Kernel 

__global__ void mykernel (int *a, int w, int h) 
{ 
    int x = threadIdx.x + blockDim.x * blockIdx.x; 
    int y = threadIdx.y + blockDim.y * blockIdx.y; 
    int ind = x + w*y; 
    if (x<w && y<h) a[ind] = a[ind] + 1; 
} 
 
int main() 
{ 
    dim3 block = dim3(32,8,1);   // 32*8 = 256 threads 
    // ensure enough blocks to cover w * h elements (round up) 
    dim3 grid = dim3( (w + block.x – 1) / block.x, 
                      (h + block.y - 1) / block.y, 1 ); 
    mykernel <<<grid,block>>> (d_A, dimx, dimy); 
} 



Always Check Validity of Indices 

 
 
 
 
__global__ void mykernel (int *a, int n) 
{ 
    int ind = threadIdx.x + blockDim.x * blockIdx.x; 
    if (ind<n) a[ind] = a[ind] + 1; 
} 
 
__global__ void mykernel (int *a, int w, int h) 
{ 
    int x = threadIdx.x + blockDim.x * blockIdx.x; 
    int y = threadIdx.y + blockDim.y * blockIdx.y; 
    int ind = x + w*y; 
    if (x<w && y<h) a[ind] = a[ind] + 1; 
} 
 
 
 

  There may be more threads than array elements 
  Always test whether the indices are within bounds 



 
__global__ void kernel (int *a) 
{ 
    int idx = threadIdx.x  + blockDim.x * blockIdx.x; 
    a[idx] = 7; 
} 
 
 
__global__ void kernel (int *a) 
{ 
    int idx = threadIdx.x  + blockDim.x * blockIdx.x; 
    a[idx] = blockIdx.x; 
} 
 
 
__global__ void kernel(int *a) 
{ 
    int idx = threadIdx.x  + blockDim.x * blockIdx.x; 
    a[idx] = threadIdx.x; 
} 

Exercise: IDs of Threads and Blocks 

Output: 

Output: 

kernel<<<4,4>>>(d_a); 

7 7 7 7   7 7 7 7   7 7 7 7   7 7 7 7 

Output: 0 0 0 0   1 1 1 1   2 2 2 2   3 3 3 3 

0 1 2 3   0 1 2 3   0 1 2 3   0 1 2 3 



Code Executed on GPU: Functions 

  Special qualifiers to declare GPU functions: 

  __global__ :  kernels 
    launched by CPU to run on the GPU 
    must return void 

  __device__ : auxiliary GPU functions 
    can only be called on the GPU 
    called from __global__ or __device__ functions 

  __host__    :  “normal” CPU C/C++ functions 
    can only be called on the CPU 

  __host__   __device__ : qualifiers can be combined 
     callable from CPU and from GPU 



Code Executed on GPU: Restrictions 

  C/C++ with some restrictions 

  only access to GPU memory 
  not to CPU memory 
  can access „pinned“ CPU memory (special allocation needed) 
  from CUDA 6 and CC 3.0: GPU can access CPU memory 

no access to host functions 

  no variable number of arguments 

  no static variables in functions or classes 
 



Code Executed on GPU: Features 

  Many C/C++ features available for GPU code 

  templates  
  recursion (CC >=2.0) 
  overloading 

  function overloading 
  operator overloading 

  classes 
  stack allocation 
  heap allocation (CC >= 2.0) 
  inheritance, virtual functions (CC >= 2.0) 

  function pointers (CC >= 2.0) 
  printf() formatted output  (CC >= 2.0) 

 
  Vector variants of basic types 

  float2, float3, float4, double2, int4, char2, etc. 
  float2 a=make_float2(1,2); a.x=10; a.y=a.x; 



Blocks: Must Be Independent 

  Any possible ordering of blocks should be valid 
  presumed to run to completion without pre-emption 
  can run in any order (order is unspecified) 
  can run concurrently OR sequentially 

  Blocks may coordinate but not synchronize 
  shared queue pointer: OK 
  shared lock: BAD … can easily deadlock 

  Independence requirement gives scalability 



Execution of Kernels: Asynchronous 

  Kernel launches are asynchronous w.r.t. CPU 
  after kernel launch, control immediately returns 
  CPU is free to do other work while the GPU is busy 

  Kernel launches are queued 
kernel doesn‘t start until previous kernels are 
finished 
concurrent kernels possible for CC >= 2.0 

(given enough resources) 

  Explicit synchronization if needed 
cudaDeviceSynchronize() 



EXECUTION ON GPU 



NVIDIA GPU Architecture 

 
 
  16 independent multiprocessors (SMs) 
No shared resources except global memory 
No synchronization, always work in parallel  

Fermi 
GPU 

(CC 2.x) 



Single Fermi SM Multiprocessor 

  32 CUDA Cores per SM (512 total) 
arithmetic/logic operations 

  16 memory load/store units 
  (slow) access to off-chip GPU memory 

  4 Special Function Units 
  1/X, 1/SQRT(X), SIN, COS, EXP, … 

  64 KB on-chip shared memory 
  shared amongst CUDA cores 
  enables thread communication 



NVIDIA GPU Architecture: Current 

 
  15 multiprocessors (up to) 

  192 Cuda Cores per SM 
  2880 Cores in total (up to) 

Kepler 
GPU 

(CC 3.x) 



NVIDIA GPU Architecture: Current 

 

 
 
  5 multiprocessors (up to) 

  128 Cuda Cores per SM 
  640 Cores in total (up to) 

Maxwell 
GPU 

(CC 5.0) 



Warps: Key Architectural Idea 

  SIMT (Single Instruction Multiple Thread) execution 
  threads run in groups of 32 called warps 

  All 32 threads in a warp execute the same 
instruction 

always, no matter what (even if threads diverge) 

  Threads are executed warp-wise by the GPU 
for each warp, the 32 threads are executed in parallel 
warps are executed one after another 
  but several warps can run simultaneously 

up to 2 for CC 2.x, up to 6 for CC 3.x 



Thread Hierarchy 



Execution of Kernels on the GPU 

  Blocks are distributed across 
 the Multiprocessors (SMs) 

  Active blocks 
  are currently executed 
  reside on a multiprocessor 
  resources allocated 

executed until finished 
 

  Waiting blocks 
  wait to be executed 
  not yet assigned to a SM 



Blocks Execute on Multiprocessors 

Each block is executed on one Multiprocessor (SM) 
cannot migrate 
reason for block independence 

 
  Several blocks per SM possible 

  if enough resources available 
  SM resources are divided among all blocks 

  Block threads share SM resources 
  SM registers are divided up 
 among the threads 
  SM shared memory can be 
 read/written by all threads 

 



Execution on each Multiprocessor 

Assume there are three blocks on one SM, 
 with 128 threads per block: 

block 0 
 

128 
threads 

block 1 
 

128 
threads 

block 2 
 

128 
threads 



Execution on each Multiprocessor 

  Threads from all blocks are divided into warps 

  In our example: 
  4 warps from every block (128 threads/32) 
  12 warps overall on SM (3 blocks * 4 warps/block) 

  12*32 = 384 threads 



Execution on each Multiprocessor 

  Resources are allocated for all potential warps 
  the state of every potentially executable warp is 

always present on the Multiprocessor, until finished 
  overall many more potentially executable threads 

than CUDA Cores possible 

  Therefore: 
  switching between warps is free 
  any non-waiting warp can run 



Execution on each Multiprocessor 

At each clock cycle 
each warp scheduler chooses a warp 
 which is ready to be executed 
  

For each chosen warp 
the next instruction is executed 
 for all 32 threads of the warp 
issued for execution to 

  CUDA Cores 
or load/store units 
or special function units 
or texture units 

 



Execution on each Multiprocessor 



MEMORY MANAGEMENT 



GPU Memory 

Kernel 0 

. . . 
Per-device 

Global 
Memory 

. . . 

Kernel 1 

Sequential 
Kernels 

Device 0 
memory 

Device 1 
memory 

Host memory cudaMemcpy() 



GPU Memory 

  CPU and GPU have separate memory spaces 
  data is moved across PCIe bus 
  use functions to allocate/set/copy memory on GPU 

  very similar to corresponding C functions 
 

  Pointers are just addresses 
  cannot tell from pointer if memory is on GPU or CPU 

  but possible for CC>=2.0: unified virtual addressing 
  must exercise care when dereferencing: 

  crash if GPU dereferences pointer to CPU memory 
  and vice versa 



Allocation / Release 

  Host (CPU) manages device (GPU) memory: 
cudaMalloc (void **pointer, size_t nbytes) 
cudaMemset (void *pointer, int value, size_t count) 
cudaFree (void* pointer) 

 
int n = 1024; 
size_t nbytes = n*sizeof(int); 
int *d_a = NULL; 
cudaMalloc(&d_a, nbytes); 
cudaMemset(d_a, 0, nbytes); 
cudaFree(d_a); 

 



Data Copies Between GPU and CPU 

  cudaMemcpy (void *dst,  void *src,   size_t nbytes,  
             cudaMemcpyKind direction); 
  blocks the CPU thread until all bytes have been copied 
  non-blocking variants are also available 
  doesn't start copying until all previous CUDA calls complete 

  cudaMemcpyKind: 
cudaMemcpyHostToDevice 
cudaMemcpyDeviceToHost 
cudaMemcpyDeviceToDevice 

 cudaMemcpy(dev_ptr, host_ptr, n*sizeof(float), 
  cudaMemcpyHostToDevice); 



Example Host Code 

// allocate and initialize host (CPU) memory 
float *h_a = ...,   *h_b = ...; *h_c = ... (empty) 
 
// allocate device (GPU) memory 
float *d_a, *d_b, *d_c; 
cudaMalloc( &d_a, n * sizeof(float) ); 
cudaMalloc( &d_b, n * sizeof(float) ); 
cudaMalloc( &d_c, n * sizeof(float) ); 
 
// copy host memory to device 
cudaMemcpy( d_a, h_a, n * sizeof(float), cudaMemcpyHostToDevice ); 
cudaMemcpy( d_b, h_b, n * sizeof(float), cudaMemcpyHostToDevice ); 
 
// launch kernel 
dim3 block = dim3(128,1,1); 
dim3 grid = dim3((n + block.x – 1) / block.x, 1, 1); 
vecAdd <<<grid,block>>> (d_a, d_b, d_c); 
 
// copy result back to host (CPU) memory 
cudaMemcpy( h_c, d_c, n * sizeof(float), cudaMemcpyDeviceToHost ); 
 
// do something with the result... 
 
// free device (GPU) memory 
cudaFree(d_a); 
cudaFree(d_b); 
cudaFree(d_c); 
 



Use float by Default 

  GPUs can handle double since CC>=1.3 
  But float operations are still much faster 

  by an order of magnitude 
  so use double only if float is not enough 

  Avoid using double where not needed: 
  Add 'f' suffix to float literals: 

  0.f, 1.0f, 3.1415f are of type float 
  0.0, 1.0,  3.1415   are of type double 

  Use float version of math functions: 
  expf / logf / sinf / sqrtf / etc. take and return float  
  exp  / log / sin / sqrt / etc. take and return double 



Blocks Size: How To Choose? 

  Number of threads/block should be multiple of 32 
  because threads are always executed in groups of 32 

 
  Rules of thumb: 

  not too small or too big: between 128 and 256 threads 
  start with dim3(32,8,1), i.e. 256 threads 
  experiment with similar sized "power-of-2"-blocks: 

  (64,4,1), (128,2,1), (32,4,1), (64,2,1) 
  (32,16,1), (64,8,1), (128,4,1), (256,2,1) 

  measure the run time and choose the best block size! 



ERROR HANDLING 
AND COMPILING 



Error Handling 

  Checking for errors is crucial for programming GPUs 
  cudaError_t cudaGetLastError() 

returns the code for the last error 
  resets the error flag back to cudaSuccess 
  cudaPeetAtLastError(): get error code without resetting it 
  if everything OK: cudaSuccess 

  char* cudaGetErrorString(cudaError_t code) 
  returns a C-string describing the error 

cudaMalloc(&d_a, n*sizeof(float)); 
cudaError_t e = cudaGetLastError(); 
if (e!=cudaSuccess) 
{ 
    cerr << "ERROR: " << cudaGetErrorString(e) << endl; 
    exit(1); 
} 
 



Error Handling 

  Kernel execution is asynchronous 
  first wait for the kernel to finish by cudaDeviceSynchronize() 
  only then call cudaGetLastError() 

–  otherwise it will be called too soon, the error may not have yet occured 
  kernel launch itself may produce errors due to invalid configurations 

–  too many threads/block, too many blocks, too much shared memory requested 

  Kernels may produce subtle memory corruption errors 
  may get unnoticed even after cudaDeviceSynchronize() 
  subsequent CUDA calls may or may not fail because of such an error 
  if they do fail, they were not the origin of the error 

  It helps to keep track of the previous x CUDA calls 
  x=1, or x=2, or x=10 



Compiling 

  CUDA files have ending .cu: squareArray.cu 

  NVidia CUDA Compiler: nvcc 
  handles the CUDA part 
  hands over pure C/C++ part to host compiler 

 
  Additional info about the kernels by option  
 --ptxas-options=-v 

nvcc -o squareArray squareArray.cu 

nvcc -o squareArray squareArray.cu --ptxas-options=-v 
ptxas info    : Compiling entry function '_Z18cuda_square_kernelPfi' for 'sm_10' 
ptxas info    : Used 2 registers, 28 bytes smem 



CUDA Short Summary 

Thread Hierarchy 
thread  -  smallest executable unity 
block  -  group of threads, shared memory for collaboration 
grid  -  consists of several blocks 
warp  -  group of 32 threads 
 
Keyword extensions for C/C++ 
__global__  -  kernel - function called by CPU, executed on GPU 
__device__  -  function called by GPU and executed  on GPU 
__host__  -  [optional] - function called and executed by CPU 
<<<...>>>  -  kernel launch, chevrons specify grid and block sizes 
 
Compilation: 
nvcc -o <executable> <filename>.cu --ptxas-options=-v 


