
GPU Programming
in Computer Vision

Introduction to Parallel Computing

Thomas Möllenhoff, Robert Maier,
Caner Hazırbaş

Technical University Munich, Computer Vision Group
Summer Semester 2015, September 7 – October 6

Computer Vision Group

Our Research

This Course

  Parallel Programming with CUDA

  Computer Vision Basics
image filtering (convolution, diffusion, denoising)
basic algorithms
regularization (dealing with noise)

Optimization + Numerics

Course Goals

  Learn how to program massively parallel
processors and achieve

  high performance
  functionality and maintainability
  scalability across future generations

  Acquire technical knowledge required to achieve
above goals

  principles and patterns of parallel programming
  processor architecture features and constraints
  programming API, tools and techniques

  Apply this knowledge to implement computer
 vision algorithms efficiently

Course Timeline: 07.09. – 06.10.

  September 7-11 (this week) : Lecture
  2-4h lectures (attendance mandatory)

programming exercises
groups of 2-3 students

  September 12-October 4: Student project
advanced applications
unsupervised

October 5-6: Presentations

Lecture Week

Lecture
starts at 10:00 sharp each day
attendance mandatory to pass the course

Exercises
until 18:00 each day
groups of 2-3 students
present solutions

 on next day after the lecture

“Work @ Home” ™

You can access your computer remotely:

 ssh –X p123@atradig789.informatik.tu-muenchen.de

  p123: replace with your login
  atradig789: replace with your computer name

  type hostname to find out the name

  Works from within Linux or Mac
for Mac: install XQuartz first (X11 server)

Why Massively Parallel Processing?

  A quiet revolution: Performance!
  computations: TFLOPs vs. 100 GFLOPs

  GPU in every PC – massive volume & impact

Why Massively Parallel Processing?

  A quiet revolution: Performance!
  bandwidth: ~5x

  GPU in every PC – massive volume & impact

Serial Performance Scaling is Over

  Cannot continue to scale processor frequencies
  no 10 GHz chips

  Cannot continue to increase power consumption

  can’t melt chip

  Can continue to increase transistor density
  as per Moore’s Law

How to Use Transistors?

  Larger caches … decreasing

  Instruction-level parallelism … decreasing
  out-of-order execution, speculation, …

  Data-level parallelism … increasing

  vector units, SIMD execution, …
  Intel SSE, GPUs, …

  Thread-level parallelism … increasing
  multithreading, multicore, manycore

Design Difference: CPU vs. GPU

  Different goals produce different designs
  CPU must be good at everything, parallel or not
  GPU assumes work load is highly parallel

  CPU: minimize latency experienced by 1 thread
  big on-chip caches
  sophisticated control logic

  GPU: maximize throughput of all threads
  skip big caches, multithreading hides latency
  share control logic across many threads, SIMD
  create and run thousands of threads

Design Difference: CPU vs. GPU

  Different goals produce different designs
  CPU must be good at everything, parallel or not
  GPU assumes work load is highly parallel

CPU
minimize latency

GPU
maximize throughput

Enter the GPU

  Massively parallel

Affordable supercomputing

NVIDIA GPUs

Compute Capability
version number of the hardware architecture
core architecture and incremental improvements

Arch CC GPUs Features (e.g.)

Tesla
(2007)

1.0 8800 GTX, Tesla C870 Basic functionality
1.1 9800 GTX, Quadro FX 580 Atomics in global mem
1.2 GT 240, Quadro FX 1800M Atomics in shared mem
1.3 GTX 285, Tesla C1060 Double precision

Fermi
(2010)

2.0 GTX 480/580, Tesla C2070 Memory cache
2.1 GTX 460, GTX 560 Ti More cores (hardware)

Kepler
(2012)

3.0 GTX 680/770, Tesla K10 Power efficiency, Many cores
3.5 GTX 780/Titan, Tesla K20 Dynamic Parallelism, Hyper-Q

Maxwell
(2014)

5.0 GTX 750, GTX 750 Ti 135% performance/core
200% performance/watt

NVIDIA GPUs

Compute Capability
version number of the hardware architecture
core architecture and incremental improvements

  List of features for each Compute Capability:

  see NVIDIA Programming Guide: Appendix G.1

NVIDIA GPUs: Current Architecture

  5 multiprocessors (up to)

  128 Cuda Cores per SM
  640 Cores in total (up to)

1st gen
Maxwell

GPU

Enter CUDA
(“Compute Unified Device Architecture“)

  Scalable parallel programming model
exposes the computational horsepower of GPUs

Abstractions for parallel computing
  let programmers focus on parallel algorithms
  not mechanics of a parallel programming language

  Minimal extensions to familiar C/C++
environment to run code on the GPU

  low learning curve

CUDA: Scalable Parallel Programming

  Provide straightforward mapping onto hardware
  good fit to GPU architecture
  maps well to multi-core CPUs too

  Execute code by many threads in parallel

  Scale to 100s of cores & 10,000s of threads
  GPU threads are lightweight — create / switch is free
  GPU needs 1000s of threads for full utilization

Reference: CUDA Programming Guide

  CUDA comes with excellent documentation
  doc/pdf in the CUDA folder, have a look!

  CUDA Programming Guide
  one of the best CUDA references
  covers every CUDA feature
  provides in-depth explanations

  Also: list of all CUDA functions:

  CUDA_Runtime_API.pdf

Outline of CUDA Basics

  Kernels and Thread Hierarchy
  Execution on the GPU
  Memory Management
  Error Handling And Compiling

  See the Programming Guide for the full API

BASIC KERNELS AND
THREAD HIERARCHY

CUDA Definitions

  Device: GPU
executes code in parallel

  Host: CPU
manages execution on the device

  Kernel: C/C++ function executed on the device
  executed by many threads

each thread executes the same sequential program
each thread is free to execute a unique code path

Quick Example

  CPU: Process subtasks serially one by one:

  GPU: Process each subtask in its own thread:

  launch enough threads to cover all data

__global__ void vecAdd (float *a, float *b, float *c)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 c[i] = a[i] + b[i];
}

for(int i=0; i<n; i++)
{
 c[i] = a[i] + b[i];
}

Each thread knows its index

Thread Hierarchy

  Kernel threads are grouped into blocks
up to 512 or 1024 threads per block

  Idea: Threads from the same block can cooperate
  synchronize their execution
  communicate via shared memory

threads from different blocks cannot cooperate

Allows transparent scaling to different GPUs
  All kernel blocks together form a grid

Thread Hierarchy

  # threads per block:
up to 512 (CC 1.x),
up to 1024 (CC>=2.0)

  Blocks can be 1D, 2D, or 3D
Grids can be 1D, 2D, or 3D

  CC 1.x: only 1D or 2D

  Dimensions set at launch
  can be different for each grid

IDs and Dimensions

  Threads:
  3D IDs, unique within a block

  Blocks:
  3D IDs, unique within a grid

  Built-in variables:
threadIdx, blockIdx
blockDim, gridDim

Array Accesses: Index Calculation

  Obtain unique array index from block/thread IDs
threadIdx, blockIdx
blockDim, gridDim

0 1 2 3 4

0

0 1 2 3 4

1

0 1 2 3 4

2blockIdx.x

threadIdx.x

blockDim.x = 5

threadIdx.x + blockDim.x*blockIdx.x

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 array index

Kernel Launch

Usual C/C++ function call, with an additional
specification of grid and block sizes:

  dim3 grid; dim3 block;

  three ints: block.x, block.y, block.z

  Kernel is launched by the CPU
  CC >= 3.5: kernels can launch other kernels

  Executed on the GPU

mykernel <<< grid, block >>> (...);

Example: One-dimensional Kernel

__global__ void mykernel (int *a, int n)
{
 int ind = threadIdx.x + blockDim.x * blockIdx.x;
 if (ind<n) a[ind] = a[ind] + 1;
}

int main()
{
 dim3 block = dim3(128,1,1); // 128 threads
 // ensure enough blocks to cover n elements (round up)
 dim3 grid = dim3((n + block.x – 1) / block.x, 1, 1);
 mykernel <<<grid, block>>> (d_a, n);

 // Also possible:
 // launch 4 blocks, each with 128 threads
 mykernel <<<4,128>>> (d_a, n);
}

Example: Two-dimensional Kernel

__global__ void mykernel (int *a, int w, int h)
{
 int x = threadIdx.x + blockDim.x * blockIdx.x;
 int y = threadIdx.y + blockDim.y * blockIdx.y;
 int ind = x + w*y;
 if (x<w && y<h) a[ind] = a[ind] + 1;
}

int main()
{
 dim3 block = dim3(32,8,1); // 32*8 = 256 threads
 // ensure enough blocks to cover w * h elements (round up)
 dim3 grid = dim3((w + block.x – 1) / block.x,
 (h + block.y - 1) / block.y, 1);
 mykernel <<<grid,block>>> (d_A, dimx, dimy);
}

Always Check Validity of Indices

__global__ void mykernel (int *a, int n)
{
 int ind = threadIdx.x + blockDim.x * blockIdx.x;
 if (ind<n) a[ind] = a[ind] + 1;
}

__global__ void mykernel (int *a, int w, int h)
{
 int x = threadIdx.x + blockDim.x * blockIdx.x;
 int y = threadIdx.y + blockDim.y * blockIdx.y;
 int ind = x + w*y;
 if (x<w && y<h) a[ind] = a[ind] + 1;
}

  There may be more threads than array elements
  Always test whether the indices are within bounds

__global__ void kernel (int *a)
{
 int idx = threadIdx.x + blockDim.x * blockIdx.x;
 a[idx] = 7;
}

__global__ void kernel (int *a)
{
 int idx = threadIdx.x + blockDim.x * blockIdx.x;
 a[idx] = blockIdx.x;
}

__global__ void kernel(int *a)
{
 int idx = threadIdx.x + blockDim.x * blockIdx.x;
 a[idx] = threadIdx.x;
}

Exercise: IDs of Threads and Blocks

Output:

Output:

kernel<<<4,4>>>(d_a);

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Output: 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Code Executed on GPU: Functions

  Special qualifiers to declare GPU functions:

  __global__ : kernels
 launched by CPU to run on the GPU
 must return void

  __device__ : auxiliary GPU functions
 can only be called on the GPU
 called from __global__ or __device__ functions

  __host__ : “normal” CPU C/C++ functions
 can only be called on the CPU

  __host__ __device__ : qualifiers can be combined
 callable from CPU and from GPU

Code Executed on GPU: Restrictions

  C/C++ with some restrictions

  only access to GPU memory
  not to CPU memory
  can access „pinned“ CPU memory (special allocation needed)
  from CUDA 6 and CC 3.0: GPU can access CPU memory

no access to host functions

  no variable number of arguments

  no static variables in functions or classes

Code Executed on GPU: Features

  Many C/C++ features available for GPU code

  templates
  recursion (CC >=2.0)
  overloading

  function overloading
  operator overloading

  classes
  stack allocation
  heap allocation (CC >= 2.0)
  inheritance, virtual functions (CC >= 2.0)

  function pointers (CC >= 2.0)
  printf() formatted output (CC >= 2.0)

  Vector variants of basic types

  float2, float3, float4, double2, int4, char2, etc.
  float2 a=make_float2(1,2); a.x=10; a.y=a.x;

Blocks: Must Be Independent

  Any possible ordering of blocks should be valid
  presumed to run to completion without pre-emption
  can run in any order (order is unspecified)
  can run concurrently OR sequentially

  Blocks may coordinate but not synchronize
  shared queue pointer: OK
  shared lock: BAD … can easily deadlock

  Independence requirement gives scalability

Execution of Kernels: Asynchronous

  Kernel launches are asynchronous w.r.t. CPU
  after kernel launch, control immediately returns
  CPU is free to do other work while the GPU is busy

  Kernel launches are queued
kernel doesn‘t start until previous kernels are
finished
concurrent kernels possible for CC >= 2.0

(given enough resources)

  Explicit synchronization if needed
cudaDeviceSynchronize()

EXECUTION ON GPU

NVIDIA GPU Architecture

  16 independent multiprocessors (SMs)
No shared resources except global memory
No synchronization, always work in parallel

Fermi
GPU

(CC 2.x)

Single Fermi SM Multiprocessor

  32 CUDA Cores per SM (512 total)
arithmetic/logic operations

  16 memory load/store units
  (slow) access to off-chip GPU memory

  4 Special Function Units
  1/X, 1/SQRT(X), SIN, COS, EXP, …

  64 KB on-chip shared memory
  shared amongst CUDA cores
  enables thread communication

NVIDIA GPU Architecture: Current

  15 multiprocessors (up to)

  192 Cuda Cores per SM
  2880 Cores in total (up to)

Kepler
GPU

(CC 3.x)

NVIDIA GPU Architecture: Current

  5 multiprocessors (up to)

  128 Cuda Cores per SM
  640 Cores in total (up to)

Maxwell
GPU

(CC 5.0)

Warps: Key Architectural Idea

  SIMT (Single Instruction Multiple Thread) execution
  threads run in groups of 32 called warps

  All 32 threads in a warp execute the same
instruction

always, no matter what (even if threads diverge)

  Threads are executed warp-wise by the GPU
for each warp, the 32 threads are executed in parallel
warps are executed one after another
  but several warps can run simultaneously

up to 2 for CC 2.x, up to 6 for CC 3.x

Thread Hierarchy

Execution of Kernels on the GPU

  Blocks are distributed across
 the Multiprocessors (SMs)

  Active blocks
  are currently executed
  reside on a multiprocessor
  resources allocated

executed until finished

  Waiting blocks
  wait to be executed
  not yet assigned to a SM

Blocks Execute on Multiprocessors

Each block is executed on one Multiprocessor (SM)
cannot migrate
reason for block independence

  Several blocks per SM possible

  if enough resources available
  SM resources are divided among all blocks

  Block threads share SM resources
  SM registers are divided up
 among the threads
  SM shared memory can be
 read/written by all threads

Execution on each Multiprocessor

Assume there are three blocks on one SM,
 with 128 threads per block:

block 0

128
threads

block 1

128
threads

block 2

128
threads

Execution on each Multiprocessor

  Threads from all blocks are divided into warps

  In our example:
  4 warps from every block (128 threads/32)
  12 warps overall on SM (3 blocks * 4 warps/block)

  12*32 = 384 threads

Execution on each Multiprocessor

  Resources are allocated for all potential warps
  the state of every potentially executable warp is

always present on the Multiprocessor, until finished
  overall many more potentially executable threads

than CUDA Cores possible

  Therefore:
  switching between warps is free
  any non-waiting warp can run

Execution on each Multiprocessor

At each clock cycle
each warp scheduler chooses a warp
 which is ready to be executed

For each chosen warp
the next instruction is executed
 for all 32 threads of the warp
issued for execution to

  CUDA Cores
or load/store units
or special function units
or texture units

Execution on each Multiprocessor

MEMORY MANAGEMENT

GPU Memory

Kernel 0

. . .
Per-device

Global
Memory

. . .

Kernel 1

Sequential
Kernels

Device 0
memory

Device 1
memory

Host memory cudaMemcpy()

GPU Memory

  CPU and GPU have separate memory spaces
  data is moved across PCIe bus
  use functions to allocate/set/copy memory on GPU

  very similar to corresponding C functions

  Pointers are just addresses
  cannot tell from pointer if memory is on GPU or CPU

  but possible for CC>=2.0: unified virtual addressing
  must exercise care when dereferencing:

  crash if GPU dereferences pointer to CPU memory
  and vice versa

Allocation / Release

  Host (CPU) manages device (GPU) memory:
cudaMalloc (void **pointer, size_t nbytes)
cudaMemset (void *pointer, int value, size_t count)
cudaFree (void* pointer)

int n = 1024;
size_t nbytes = n*sizeof(int);
int *d_a = NULL;
cudaMalloc(&d_a, nbytes);
cudaMemset(d_a, 0, nbytes);
cudaFree(d_a);

Data Copies Between GPU and CPU

  cudaMemcpy (void *dst, void *src, size_t nbytes,
 cudaMemcpyKind direction);
  blocks the CPU thread until all bytes have been copied
  non-blocking variants are also available
  doesn't start copying until all previous CUDA calls complete

  cudaMemcpyKind:
cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost
cudaMemcpyDeviceToDevice

 cudaMemcpy(dev_ptr, host_ptr, n*sizeof(float),
 cudaMemcpyHostToDevice);

Example Host Code

// allocate and initialize host (CPU) memory
float *h_a = ..., *h_b = ...; *h_c = ... (empty)

// allocate device (GPU) memory
float *d_a, *d_b, *d_c;
cudaMalloc(&d_a, n * sizeof(float));
cudaMalloc(&d_b, n * sizeof(float));
cudaMalloc(&d_c, n * sizeof(float));

// copy host memory to device
cudaMemcpy(d_a, h_a, n * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_b, h_b, n * sizeof(float), cudaMemcpyHostToDevice);

// launch kernel
dim3 block = dim3(128,1,1);
dim3 grid = dim3((n + block.x – 1) / block.x, 1, 1);
vecAdd <<<grid,block>>> (d_a, d_b, d_c);

// copy result back to host (CPU) memory
cudaMemcpy(h_c, d_c, n * sizeof(float), cudaMemcpyDeviceToHost);

// do something with the result...

// free device (GPU) memory
cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);

Use float by Default

  GPUs can handle double since CC>=1.3
  But float operations are still much faster

  by an order of magnitude
  so use double only if float is not enough

  Avoid using double where not needed:
  Add 'f' suffix to float literals:

  0.f, 1.0f, 3.1415f are of type float
  0.0, 1.0, 3.1415 are of type double

  Use float version of math functions:
  expf / logf / sinf / sqrtf / etc. take and return float
  exp / log / sin / sqrt / etc. take and return double

Blocks Size: How To Choose?

  Number of threads/block should be multiple of 32
  because threads are always executed in groups of 32

  Rules of thumb:

  not too small or too big: between 128 and 256 threads
  start with dim3(32,8,1), i.e. 256 threads
  experiment with similar sized "power-of-2"-blocks:

  (64,4,1), (128,2,1), (32,4,1), (64,2,1)
  (32,16,1), (64,8,1), (128,4,1), (256,2,1)

  measure the run time and choose the best block size!

ERROR HANDLING
AND COMPILING

Error Handling

  Checking for errors is crucial for programming GPUs
  cudaError_t cudaGetLastError()

returns the code for the last error
  resets the error flag back to cudaSuccess
  cudaPeetAtLastError(): get error code without resetting it
  if everything OK: cudaSuccess

  char* cudaGetErrorString(cudaError_t code)
  returns a C-string describing the error

cudaMalloc(&d_a, n*sizeof(float));
cudaError_t e = cudaGetLastError();
if (e!=cudaSuccess)
{
 cerr << "ERROR: " << cudaGetErrorString(e) << endl;
 exit(1);
}

Error Handling

  Kernel execution is asynchronous
  first wait for the kernel to finish by cudaDeviceSynchronize()
  only then call cudaGetLastError()

–  otherwise it will be called too soon, the error may not have yet occured
  kernel launch itself may produce errors due to invalid configurations

–  too many threads/block, too many blocks, too much shared memory requested

  Kernels may produce subtle memory corruption errors
  may get unnoticed even after cudaDeviceSynchronize()
  subsequent CUDA calls may or may not fail because of such an error
  if they do fail, they were not the origin of the error

  It helps to keep track of the previous x CUDA calls
  x=1, or x=2, or x=10

Compiling

  CUDA files have ending .cu: squareArray.cu

  NVidia CUDA Compiler: nvcc
  handles the CUDA part
  hands over pure C/C++ part to host compiler

  Additional info about the kernels by option
 --ptxas-options=-v

nvcc -o squareArray squareArray.cu

nvcc -o squareArray squareArray.cu --ptxas-options=-v
ptxas info : Compiling entry function '_Z18cuda_square_kernelPfi' for 'sm_10'
ptxas info : Used 2 registers, 28 bytes smem

CUDA Short Summary

Thread Hierarchy
thread - smallest executable unity
block - group of threads, shared memory for collaboration
grid - consists of several blocks
warp - group of 32 threads

Keyword extensions for C/C++
__global__ - kernel - function called by CPU, executed on GPU
__device__ - function called by GPU and executed on GPU
__host__ - [optional] - function called and executed by CPU
<<<...>>> - kernel launch, chevrons specify grid and block sizes

Compilation:
nvcc -o <executable> <filename>.cu --ptxas-options=-v

