
GPU Programming in Computer Vision: Day 3

Date: Wednesday, 9. September 2015

Please work in groups of 2–3 people. We will check your solutions tomorrow after the lec-
ture. Please be prepared to present your solution and explain the code. The general code
requirements from exercise sheet 1 still apply. The bonus exercises are not mandatory.

Exercise 10: Isotropic Diffusion (8P)

Implement the nonlinear isotropic diffusion

∂tu = div
(
ĝ
(
|∇u|

)
∇u
)
,

for different choices of ĝ. This means updating u in the following way:

un+1 = un + τ div(ĝ
(
|∇un|

)
∇un

)
.

As a initial condition, pick u0 as the input image. For simplicity, we consider ĝ(s) = 1 at first.

1. Use forward differences to compute the derivatives v1 := ∂+x u and v2 := ∂+y u.
Reuse your code from exercise 4.

2. Compute the diffusivity g from v1, v2. Use a “ host device ” function for ĝ. Hint:
Note that g is scalar, there is only one value g, which is shared for all channels.

3. Multiply v1, v2 by g, and store the result again in v1, v2.
If you want, you can combine steps 2 and 3 into a single kernel. Note that then you
don’t need an array for g, because you can compute g locally in the kernel.

4. Use backward differences to compute the divergence: d := div
(
v1
v2

)
= ∂−x v1 + ∂−y v2.

Reuse your code from exercise 4. y

5. Compute the update step for u, update all of the nc channels in a single kernel. You
can implement this as a separate kernel, or as part of the div-kernel from step 3.

6. Compute N iterations of the diffusion and visualize the end result. Experiment with
different time steps τ and different numbers of iterations N . A necessary condition for
convergence is τ < 0.25/ĝ(0), i.e. τ < 0.25 for ĝ(s) = 1. What happens is τ is chosen
too big? What happens for very large N?

7. Compare the result to Gaussian convolution Gσ ∗ u with σ =
√

2τN . What do you
observe?

8. Now try using a different diffusivity function:

• ĝ(s) = 1
max(ε,s) ,

• ĝ(s) = exp(−s2/ε)/ε.

How do the results change in each case?

1

Exercise 11: Pitched Memory Allocation (3P)

For memory accesses of the form imgIn[x + (size t)w*y + (size t)w*h*c] to be fully
coalesced, both the width of the thread block and the width of the array must be a multiple
of the warp size. In order to guarantee that, a trick is to introduce a border so that the total
width of the array (called the “pitch”) is a multiple of the warp size (as depicted in Figure 1).

Figure 1: Pitched memory allocation.

1. Rewrite the code from exercise 3 using pitched memory allocation. Allocate all ar-
rays using cudaMallocPitch, which calculates the optimal pitch automatically. Use
cudaMemcpy2D for the memory transfers.

2. Access imgIn(x, y, c) as imgIn[x + (size t)pitch*y + (size t)pitch*h*c]. As
cudaMallocPitch returns the pitch in bytes, use pitch = pitchInBytes / sizeof(float)

to address floating point arrays.

3. Run your code on an image which has a width which is not a mulitple of the warp size.
Can you observe any speed up?

Exercise 12: Anisotropic Diffusion (Bonus) (5P)

Implement the anisotropic linear diffusion

∂tu = div(G∇u),

by iterating the explicit forward Euler scheme

un+1 = un + τ div(G∇un).

Here, G(x, y) ∈ R2×2 is a 2× 2 diffusion tensor which is different at every pixel (x, y) in the
domain and is calculated once from the input image. Its aims is to make the diffusion process
preserve image edges.

1. Compute the diffusion tensor G from the input image:

(a) First calculate the structure tensor of the input image. Postsmooth the structure
tensor with a gaussian kernel with a different standard deviation parameter ρ.
Reuse parts of your code from exercise 7.

(b) Now calculate the Eigenvalues λ1 ≥ λ2 and corresponding eigenvectors e1,e2 of the
structure tensor G in each point. For that, extend the device function from
exercise 8 to also calculate and return the eigenvectors.

2

(c) Set the diffusion tensor to G = µ1e1e
T
1 + µ2e2e

T
2 with

µ1 = α,

µ2 =

{
α λ1 = λ2,

α+ (1− α) exp
(
− C

(λ1−λ2)2

)
else,

where C > 0 and α ∈ (0, 1) are parameters.

2. Implement the diffusion as outlined in the previous exercise, except that the diffusivity
is now matrix valued and constant. Perform a 2× 2 matrix-vector multiplication on the
gradient instead of the scalar multiplication in exercise 10.

3. Try out different choices of C, α and iteratons numbers N . Remember to chose τ < 0.25
small enough. Try it out on the image van-gogh.png and pick C = 5 · 10−6, α = 0.01,
σ = 0.5 and ρ = 3 as a start. Hint: for debugging purposes it might be useful to visualize
the diffusion tensor!

3

