
Computer	
 Vision	
 Group	

GPU	
 Programming	
 in	
 	

Computer	
 Vision	

	

Final	
 Projects	

Thomas	
 Möllenhoff,	
 Robert	
 Maier,	
 Caner	
 Hazirbas	

	

Summer	
 Semester	
 2015	

Computer	
 Vision	
 Group	

•  Form	
 groups	
 of	
 3	
 people	

•  Implement	
 a	
 computer	
 vision	
 algorithm	
 in	
 CUDA	

–  Select	
 your	
 3	
 favorite	
 topics	

– We	
 will	
 assign	
 the	
 projects	
 to	
 the	
 groups	

•  Regular	
 meeFngs	
 with	
 your	
 supervisor	

•  Send	
 source	
 code	
 to	
 your	
 supervisor	
 unFl	
 Oct	
 7	

•  CheaFng:	
 all	
 involved	
 groups	
 will	
 get	
 the	
 grade	
 5.0	

Project	
 Phase	
 (Sept	
 14	
 -­‐	
 Oct	
 2)	

2	

Computer	
 Vision	
 Group	

PresentaFons	
 (Oct	
 5/6)	

•  15	
 minutes	
 per	
 group	

•  Prepare	
 slides	

– Explain	
 the	
 task	

– Explain	
 how	
 you	
 proceeded	
 to	
 solve	
 the	
 task	

– Show	
 your	
 results	

•  Live	
 demo	

•  Q&A	
 session	

3	

Computer	
 Vision	
 Group	

Final	
 Project	
 Proposals	

Implement	
 your	
 own	
 project	
 idea?	

1)  Matching	
 Deformable	
 3D	
 Shapes	
 (Emanuele	
 Rodola)	

2)  Shortest	
 Path	
 Parallel	
 ComputaFon	
 (Frank	
 R.	
 Schmidt,	
 Emanuele	
 Rodola)	

3)  Nonlinear	
 Shape	
 RegistraFon	
 (Csaba	
 Domokos)	

4)  Depth-­‐AdapFve	
 Superpixels	
 (Lingni	
 Ma,	
 Thomas	
 Möllenhoff)	

5)  Joint	
 MoFon	
 EsFmaFon	
 and	
 Image	
 ReconstrucFon	
 (Michael	
 Möller)	

6)  VariaFonal	
 Super-­‐resoluFon	
 (Robert	
 Maier,	
 Thomas	
 Möllenhoff)	

7)  RGB-­‐D	
 Keyframe	
 Fusion	
 (Robert	
 Maier)	

8)  TSDF	
 Volume	
 with	
 Median	
 Color	
 Fusion	
 (Robert	
 Maier)	

9)  Octree	
 TSDF	
 Volume	
 (Robert	
 Maier)	

10)  Dense	
 Visual	
 Odometry	
 (Robert	
 Maier)	

4	

Matching Deformable 3D Shapes
Supervisor: Dr. Emanuele Rodolà

State-of-the-art:
Solution that transfers functions to functions.

How to convert to a
solution that maps
points to points?

Our solution is an intrinsic
variant of ICP for deformable
shapes.

We have Matlab/C++ code to
compare against.

Shortest Path
Parallel Computation

Dr. Frank Schmidt, Dr. Emanuele Rodolà

Nonlinear Shape Registration
Registration: find the geometric deformation between the shapes (i.e. binary image)

Sub-tasks of the problem
● Calculate image moments

sum of the power of pixel coordinates
● Calculate efficiently Thin Plate Spline (TPS)

transformation of a shape
● Solve a system of non-linear equations via

Levenberg-Marquardt algorithm
● standard algorithm for nonlinear minimization
● there already exist some implementation in Cuda

● Optional: interface for Python or Matlab

An interesting and relevant problem in image processing
You can learn something about nonlinear function minimization

Materials
● The paper of the method is available

https://docs.google.com/file/d/0B6gqeZujyM56c1k4SGhaZzNjX1U/edit?usp=sharing
● The reference implementation in Matlab is also available
● The first author would be happy to discuss about relating questions

https://sites.google.com/site/cdomokosres/

Depth-­‐Adap*ve	
 Super	
 Pixels	
 	

[1]	
 Achanta,	
 Radhakrishna,	
 et	
 al.	
 "SLIC	
 superpixels	
 compared	
 to	
 state-­‐of-­‐the-­‐art	
 superpixel	
 methods.”,	
 IEEE	
 Transac*ons	
 on	
 Pa#ern	
 Analysis	
 and	
 Machine	
 Intelligence	
 (2012).	

[2]	
 Weikersdorfer	
 et.	
 al.	
 "Depth-­‐adap*ve	
 superpixels.”,	
 IEEE	
 Interna*onal	
 Conference	
 on	
 Pa#ern	
 Recogni<on	
 (2012).	

Idea:	
 Group	
 pixels	
 into	
 perceptually	
 meaningful	
 regions,	
 taking	
 depth	
 into	
 considera*on.	
 	

Task:	

•  Compute	
 a	
 superpixel	
 density	
 at	
 each	
 pixel.	

•  Sample	
 cluster	
 seeds	
 according	
 to	
 this	
 density.	

•  For	
 each	
 pixel	
 compute	
 a	
 9-­‐dimensional	
 	

feature	
 representa*on.	

•  Run	
 an	
 itera*ve	
 k-­‐means	
 algorithm.	

•  Op*onal:	
 segmenta*on	
 (spectral	
 graph	
 theory).	

Available	
 material:	

•  CUDA	
 implementa*on	
 of	
 [1]	
 	

	
 	
 	
 hTps://github.com/painnick/gSLIC/tree/master/gSLIC	

•  CPU	
 implementa*on	
 of	
 [2]	

	
 	
 	
 hTps://github.com/Danvil/asp	

Depth-Adaptive Superpixels

David Weikersdorfer, David Gossow, Michael Beetz
Intelligent Autonomous Systems Group, Technische Universität München.

[weikersd—gossow—beetz]@cs.tum.edu

Abstract

We propose a novel oversegmentation technique for
RGB-D images. The visible surface of the 3D geome-
try is partitioned into uniformly distributed and equally
sized planar patches. This results in a classic over-
segmentation of pixels into depth-adaptive superpixels
which correctly reflect deformation through perspec-
tive projection. The advantages of depth-adaptive su-
perpixels (DASP) are demonstrated by using spectral
graph theory to create image segmentations in near
realtime. Our algorithms outperform state-of-the-art
oversegmentation and image segmentation algorithms
both in quality and runtime.

1 Introduction

Following [7], image segmentation divides an im-
age into regions which fulfill two criteria: intra-region
similarity and inter-region dissimilarity. Oversegmen-
tation into superpixels focuses on intra-region similar-
ity, possibly dividing an image into more segments than
necessary. An oversegmentation greatly reduces scene
complexity and can be used as the basis of advanced
and expensive algorithms. Recent oversegmentation al-
gorithms like Turbopixels [5] and SLIC [1] addition-
ally have the property that the image is covered uni-
formly with superpixels of similar size. Turbopixels use
a geometric-flow-based algorithm which in addition as-
sures connectivity and compactness.

Since the advent of the Microsoft Kinect device [9],
RGB-D sensors have become available for a wide range
of applications. In this paper we contribute two al-
gorithms, oversegmentation (DASP) and segmentation
(sDASP), that make use of the additional depth infor-
mation in order to simplify the segmentation task (see
figure 1). In section 2 and 3, we describe an overseg-
mentation algorithm, which partitions the visible scene
geometry into uniformly distributed near-planar surface
patches. Due to its efficiency, we keep the notion of

(a) Color input image (b) Depth input values

(c) Depth-adaptive superpixels (d) Segments from sDASP

Figure 1. Superpixels and segments

a two-dimensional image and instead deform the shape
of local neighborhoods in image space according to the
perspective distortion and scaling. In section 4, we
show how spectral graph theory [8] can be used on top
of depth-adaptive superpixels to generate a full segmen-
tation of the image. Our method is general and can be
used to compute segmentations from any oversegmenta-
tion. Our evaluation in section 5 shows that both meth-
ods achieve significantly better performance than state-
of-the art algorithms which only consider pixel color.

2 Depth-Adaptive Superpixels

Given depth values p
⇣

:= ⇣(p
j

, p
i

) 2 R+ for every
pixel (p

j

, p
i

), corresponding 3D points p
v

in camera co-
ordinates are computed with the pinhole camera model:

p
v

= p
⇣

⇣p
j

� c
x

f
,
p
i

� c
y

f
, 1

⌘
T

, (1)

where f and (c
x

, c
y

) are camera parameters.

Depth-Adaptive Superpixels

David Weikersdorfer, David Gossow, Michael Beetz
Intelligent Autonomous Systems Group, Technische Universität München.

[weikersd—gossow—beetz]@cs.tum.edu

Abstract

We propose a novel oversegmentation technique for
RGB-D images. The visible surface of the 3D geome-
try is partitioned into uniformly distributed and equally
sized planar patches. This results in a classic over-
segmentation of pixels into depth-adaptive superpixels
which correctly reflect deformation through perspec-
tive projection. The advantages of depth-adaptive su-
perpixels (DASP) are demonstrated by using spectral
graph theory to create image segmentations in near
realtime. Our algorithms outperform state-of-the-art
oversegmentation and image segmentation algorithms
both in quality and runtime.

1 Introduction

Following [7], image segmentation divides an im-
age into regions which fulfill two criteria: intra-region
similarity and inter-region dissimilarity. Oversegmen-
tation into superpixels focuses on intra-region similar-
ity, possibly dividing an image into more segments than
necessary. An oversegmentation greatly reduces scene
complexity and can be used as the basis of advanced
and expensive algorithms. Recent oversegmentation al-
gorithms like Turbopixels [5] and SLIC [1] addition-
ally have the property that the image is covered uni-
formly with superpixels of similar size. Turbopixels use
a geometric-flow-based algorithm which in addition as-
sures connectivity and compactness.

Since the advent of the Microsoft Kinect device [9],
RGB-D sensors have become available for a wide range
of applications. In this paper we contribute two al-
gorithms, oversegmentation (DASP) and segmentation
(sDASP), that make use of the additional depth infor-
mation in order to simplify the segmentation task (see
figure 1). In section 2 and 3, we describe an overseg-
mentation algorithm, which partitions the visible scene
geometry into uniformly distributed near-planar surface
patches. Due to its efficiency, we keep the notion of

(a) Color input image (b) Depth input values

(c) Depth-adaptive superpixels (d) Segments from sDASP

Figure 1. Superpixels and segments

a two-dimensional image and instead deform the shape
of local neighborhoods in image space according to the
perspective distortion and scaling. In section 4, we
show how spectral graph theory [8] can be used on top
of depth-adaptive superpixels to generate a full segmen-
tation of the image. Our method is general and can be
used to compute segmentations from any oversegmenta-
tion. Our evaluation in section 5 shows that both meth-
ods achieve significantly better performance than state-
of-the art algorithms which only consider pixel color.

2 Depth-Adaptive Superpixels

Given depth values p
⇣

:= ⇣(p
j

, p
i

) 2 R+ for every
pixel (p

j

, p
i

), corresponding 3D points p
v

in camera co-
ordinates are computed with the pinhole camera model:

p
v

= p
⇣

⇣p
j

� c
x

f
,
p
i

� c
y

f
, 1

⌘
T

, (1)

where f and (c
x

, c
y

) are camera parameters.

(a) Image with DASP borders (b) Superpixel density (c) Sampled cluster seeds (d) Centers after 20 iterations

Figure 2. Color image, cluster density (left) and cluster seeds and centers (right)

Using knowledge of the scene geometry surface, the
principle of superpixels can be transferred to 3D space.
We aim to compute an oversegmentation of the surface
into uniformly distributed, planar patches with a fixed
radius R. The parameter R corresponds to the minimal
size of interesting features and has to be chosen depend-
ing on the application domain.

The visible part of the surface can be parametrized
by the pixel grid. Thus, a 3D oversegmentation of sur-
face points is dual to a 2D oversegmentation of pix-
els. When projecting surface patches onto the im-
age plane, they are distorted by perspective projection,
corresponding to a non-uniform oversegmentation into
depth-adaptive superpixels in the image space. To guar-
antee equal size of surface patches, the density of su-
perpixels has to increase with distance from the camera
and inclination of the surface normal relative to view
direction. To assure that surface patches are distributed
uniformly, i.e. under a Poisson disk distribution, sam-
ples drawn from the density distribution need to have a
spectrum with blue noise characteristics [3].

Desirable segment borders include color, texture and
geometry edges. While image-based approaches have
to rely on the fact that often, geometric edges go along
with changes in color and texture, the use of the 3d point
and normal corresponding to each pixel makes it possi-
ble to respect geometry directly. In our case, it is suffi-
cient to estimate the normal p

n

using the depth gradient
r⇣(p

j

, p
i

) computed from finite differences:

r⇣(p
j

, p
i

) =
1

2d
w

✓
⇣(pj+dp,pi)�⇣(pj�dp,pi)

⇣(pj ,pi+dp)�⇣(pj ,pi�dp)

◆
(2)

We choose d
w

= R

2 and compute d
p

as the size of d
w

projected into the image plane (see Eq. 3).

3 The DASP algorithm

We proceed in three steps. First, the density of su-
perpixel clusters in the image space is computed from
the depth image. Second, we use an efficient method
to sample points which will guarantee the blue-noise

spectrum property. Third, a clustering algorithm assigns
points to superpixels and improves superpixel centers.

The density of superpixel seeds at pixel (p
j

, p
i

) can
be computed by considering a disk with radius R whose
center point is at depth ⇣(p

j

, p
i

) and projected into pixel
(p

j

, p
i

) on the image sensor [4]. The projected radius
of this disk is computed using the trivial equation

r
p

(p
j

, p
i

) =
f

⇣(p
j

, p
i

)
R . (3)

For surfaces parts that are not parallel to the image
plane, one has to compute the perspective distortion.
We locally approximate this with an affine deformation
by considering the local depth gradient r⇣(p

j

, p
i

). This
gives the projected area of the disk as

A
p

(p
j

, p
i

) =
r
p

(p
j

, p
i

)2 ⇡q��r⇣(p
j

, p
i

)
��2 + 1

. (4)

The density of superpixels is directly computed as
⇢(p

j

, p
i

) / 1
Ap(pj ,pi)

. Figure 2 shows superpixel den-
sity and sampled seeds for an example image. The
bumpy pattern results from noisy depth measurements.

Fattal [3] describes an efficient method to draw
blue-noise point samples using a multi-scale sampling
scheme. Initially, few points are distributed using the
lowest density frequency and shifted into an optimal
configuration using the Langevin method. This pro-
cess is repeated iteratively for higher frequencies by us-
ing the point configuration of the previous step, split-
ting points if necessary and optimizing again. In or-
der to achieve realtime performance, we use the basic
idea of multi-scale sampling, but do not perform the
Langevin step. During the pixel clustering step, su-
perpixel centers are automatically shifted into a clus-
ter configuration which approximately satisfies the blue
noise spectrum property in addition to flatness and color
constraints (see figure 2).

Similar to SLIC, pixels are assigned to superpixel
clusters using an iterative k-means algorithm with a cus-
tomized metric. As superpixel clusters only change lo-
cally, the search radius during a k-means iteration can

(a) Image with DASP borders (b) Superpixel density (c) Sampled cluster seeds (d) Centers after 20 iterations

Figure 2. Color image, cluster density (left) and cluster seeds and centers (right)

Using knowledge of the scene geometry surface, the
principle of superpixels can be transferred to 3D space.
We aim to compute an oversegmentation of the surface
into uniformly distributed, planar patches with a fixed
radius R. The parameter R corresponds to the minimal
size of interesting features and has to be chosen depend-
ing on the application domain.

The visible part of the surface can be parametrized
by the pixel grid. Thus, a 3D oversegmentation of sur-
face points is dual to a 2D oversegmentation of pix-
els. When projecting surface patches onto the im-
age plane, they are distorted by perspective projection,
corresponding to a non-uniform oversegmentation into
depth-adaptive superpixels in the image space. To guar-
antee equal size of surface patches, the density of su-
perpixels has to increase with distance from the camera
and inclination of the surface normal relative to view
direction. To assure that surface patches are distributed
uniformly, i.e. under a Poisson disk distribution, sam-
ples drawn from the density distribution need to have a
spectrum with blue noise characteristics [3].

Desirable segment borders include color, texture and
geometry edges. While image-based approaches have
to rely on the fact that often, geometric edges go along
with changes in color and texture, the use of the 3d point
and normal corresponding to each pixel makes it possi-
ble to respect geometry directly. In our case, it is suffi-
cient to estimate the normal p

n

using the depth gradient
r⇣(p

j

, p
i

) computed from finite differences:

r⇣(p
j

, p
i

) =
1

2d
w

✓
⇣(pj+dp,pi)�⇣(pj�dp,pi)

⇣(pj ,pi+dp)�⇣(pj ,pi�dp)

◆
(2)

We choose d
w

= R

2 and compute d
p

as the size of d
w

projected into the image plane (see Eq. 3).

3 The DASP algorithm

We proceed in three steps. First, the density of su-
perpixel clusters in the image space is computed from
the depth image. Second, we use an efficient method
to sample points which will guarantee the blue-noise

spectrum property. Third, a clustering algorithm assigns
points to superpixels and improves superpixel centers.

The density of superpixel seeds at pixel (p
j

, p
i

) can
be computed by considering a disk with radius R whose
center point is at depth ⇣(p

j

, p
i

) and projected into pixel
(p

j

, p
i

) on the image sensor [4]. The projected radius
of this disk is computed using the trivial equation

r
p

(p
j

, p
i

) =
f

⇣(p
j

, p
i

)
R . (3)

For surfaces parts that are not parallel to the image
plane, one has to compute the perspective distortion.
We locally approximate this with an affine deformation
by considering the local depth gradient r⇣(p

j

, p
i

). This
gives the projected area of the disk as

A
p

(p
j

, p
i

) =
r
p

(p
j

, p
i

)2 ⇡q��r⇣(p
j

, p
i

)
��2 + 1

. (4)

The density of superpixels is directly computed as
⇢(p

j

, p
i

) / 1
Ap(pj ,pi)

. Figure 2 shows superpixel den-
sity and sampled seeds for an example image. The
bumpy pattern results from noisy depth measurements.

Fattal [3] describes an efficient method to draw
blue-noise point samples using a multi-scale sampling
scheme. Initially, few points are distributed using the
lowest density frequency and shifted into an optimal
configuration using the Langevin method. This pro-
cess is repeated iteratively for higher frequencies by us-
ing the point configuration of the previous step, split-
ting points if necessary and optimizing again. In or-
der to achieve realtime performance, we use the basic
idea of multi-scale sampling, but do not perform the
Langevin step. During the pixel clustering step, su-
perpixel centers are automatically shifted into a clus-
ter configuration which approximately satisfies the blue
noise spectrum property in addition to flatness and color
constraints (see figure 2).

Similar to SLIC, pixels are assigned to superpixel
clusters using an iterative k-means algorithm with a cus-
tomized metric. As superpixel clusters only change lo-
cally, the search radius during a k-means iteration can

Joint Motion Estimation and Image Reconstruction

(a) Input frames f (b) Denoised frames (c) Estimated flow

Energy minimization approach:

min
u,v

∫ T

0

1

2
‖u − f ‖22 + α ‖∇u‖1︸ ︷︷ ︸

TV denoising

+β ‖∇v‖1︸ ︷︷ ︸
Flow regularity

+γ ‖ut +∇u · v‖1︸ ︷︷ ︸
Coupling

dt

From: Hendrik Dirks, PhD Thesis 2015.
Joint Motion Estimation and Image Reconstruction

Joint Motion Estimation and Image Reconstruction

(a) Input frames f (b) Denoised frames (c) Estimated flow

Energy minimization approach:

min
u,v

∫ T

0

1

2
‖u − f ‖22 + α ‖∇u‖1︸ ︷︷ ︸

TV denoising

+β ‖∇v‖1︸ ︷︷ ︸
Flow regularity

+γ ‖ut +∇u · v‖1︸ ︷︷ ︸
Coupling

dt

From: Hendrik Dirks, PhD Thesis 2015.
Joint Motion Estimation and Image Reconstruction

Joint Motion Estimation and Image Reconstruction

Extended energy minimization approach:

min
u,v

∫ T

0

1

2
‖Ku − f ‖22 + α ‖∇u‖1︸ ︷︷ ︸

TV super resolution

+β ‖∇v‖1︸ ︷︷ ︸
Flow regularity

+γ ‖ut +∇u · v‖1︸ ︷︷ ︸
Coupling

dt

First image: Unger, Pock, Werlberger, Bischof 2010.
Second image: Goldlücke, Aubry, Kolev, Cremers 2014.

Joint Motion Estimation and Image Reconstruction

Computer	
 Vision	
 Group	

Varia0onal	
 Super-­‐resolu0on	

•  Input:	
 several	
 low-­‐res.	
 RGB	
 images	
 (RGB-­‐D	
 frames)	

•  Goal:	
 obtain	
 high-­‐res.	
 image	
 (sharper	
 than	
 input	
 images)	

•  Reason:	
 every	
 surface	
 patch	
 observed	
 in	
 mul0ple	
 images	

	
 -­‐>	
 invert	
 blurring	
 and	
 downsampling	

•  Reference:	
 A	
 Convex	
 Approach	
 for	
 Varia0onal	
 Super-­‐
Resolu0on	
 [Unger	
 et	
 al,	
 2010]	

Computer	
 Vision	
 Group	

RGB-­‐D	
 Keyframe	
 Fusion	

•  Idea:	
 fuse	
 low-­‐res.	
 input	
 RGB-­‐D	
 frames	
 into	
 high	

resolu0on	
 RGB-­‐D	
 keyframes	

–  Depth	
 fusion	
 (warp,	
 upsample,	
 fuse)	

–  Color	
 fusion	
 (Deblur,	
 warp,	
 fuse)	

LR	
 input	
 frame	
 Fused	
 SR	
 keyframe	

Computer	
 Vision	
 Group	

TSDF	
 Volume	

•  KinectFusion	
 [Newcombe	
 et	
 al,	
 ISMAR	
 2011]:	
 Real-­‐0me	

dense	
 3D	
 reconstruc0on	
 from	
 RGB-­‐D	
 sensors	

3D	
 surface	
 extrac0on:	

Marching	
 Cubes	

3D-­‐Model:	
 Truncated	
 Signed	
 Distance	
 Volume	

Camera-­‐Tracking:	
 	

ICP	
 +	
 Raycas0ng	

•  3D	
 reconstruc0on	
 algorithm:	

•  Idea:	
 Median	
 Color	
 Fusion	

Computer	
 Vision	
 Group	

Octree	
 TSDF	
 Volume	

•  TSDF	
 voxel	
 grid:	
 limited	
 3D	
 volume	
 size	
 and/or	

resolu0on,	
 high	
 memory	
 consump0on	

•  Idea:	
 Use	
 more	
 memory	
 efficient	
 3D	
 scene	

representa0on	
 based	
 on	
 an	
 Octree	

•  Reference:	
 Octree-­‐based	
 fusion	
 for	
 real0me	
 3D	

reconstruc0on	
 [Zeng	
 et	
 al.,	
 2013]	

Computer	
 Vision	
 Group	

•  Robust	
 Odometry	
 Es0ma0on	
 for	
 RGB-­‐D	
 Cameras	

–  Given:	
 Two	
 RGB-­‐D	
 frames	

–  Goal:	
 es0mate	
 camera	
 mo0on	
 	

	
 g*	
 by	
 minimizing	
 photometric	
 	

	
 and	
 geometric	
 error	
 	

•  Real-­‐0me	
 CPU	
 implementa0on	
 (320x240)	

•  Reference:	
 Robust	
 Odometry	
 Es0ma0on	
 for	
 RGB-­‐D	
 Cameras	

[Kerl	
 et	
 al,	
 ICRA	
 2013]	

Dense	
 Visual	
 Odometry	

Computer	
 Vision	
 Group	

Next	
 steps	

•  Today:	
 send	
 email	
 to	
 cuda-­‐ss15@in.tum.de	

–  Group	
 Members	

–  Your	
 3	
 favorite	
 topics	

•  Ader	
 project	
 assignments:	
 meet	
 with	
 your	
 supervisor	

	

•  Any	
 ques0ons?	

