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Computer	
  Vision	
  Group	
  

•  Form	
  groups	
  of	
  3	
  people	
  

•  Implement	
  a	
  computer	
  vision	
  algorithm	
  in	
  CUDA	
  
–  Select	
  your	
  3	
  favorite	
  topics	
  
– We	
  will	
  assign	
  the	
  projects	
  to	
  the	
  groups	
  

•  Regular	
  meeFngs	
  with	
  your	
  supervisor	
  
•  Send	
  source	
  code	
  to	
  your	
  supervisor	
  unFl	
  Oct	
  7	
  

•  CheaFng:	
  all	
  involved	
  groups	
  will	
  get	
  the	
  grade	
  5.0	
  

Project	
  Phase	
  (Sept	
  14	
  -­‐	
  Oct	
  2)	
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Computer	
  Vision	
  Group	
  

PresentaFons	
  (Oct	
  5/6)	
  

•  15	
  minutes	
  per	
  group	
  
•  Prepare	
  slides	
  
– Explain	
  the	
  task	
  
– Explain	
  how	
  you	
  proceeded	
  to	
  solve	
  the	
  task	
  
– Show	
  your	
  results	
  

•  Live	
  demo	
  
•  Q&A	
  session	
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Computer	
  Vision	
  Group	
  

Final	
  Project	
  Proposals	
  
Implement	
  your	
  own	
  project	
  idea?	
  

1)  Matching	
  Deformable	
  3D	
  Shapes	
  (Emanuele	
  Rodola)	
  
2)  Shortest	
  Path	
  Parallel	
  ComputaFon	
  (Frank	
  R.	
  Schmidt,	
  Emanuele	
  Rodola)	
  
3)  Nonlinear	
  Shape	
  RegistraFon	
  (Csaba	
  Domokos)	
  
4)  Depth-­‐AdapFve	
  Superpixels	
  (Lingni	
  Ma,	
  Thomas	
  Möllenhoff)	
  
5)  Joint	
  MoFon	
  EsFmaFon	
  and	
  Image	
  ReconstrucFon	
  (Michael	
  Möller)	
  
6)  VariaFonal	
  Super-­‐resoluFon	
  (Robert	
  Maier,	
  Thomas	
  Möllenhoff)	
  
7)  RGB-­‐D	
  Keyframe	
  Fusion	
  (Robert	
  Maier)	
  
8)  TSDF	
  Volume	
  with	
  Median	
  Color	
  Fusion	
  (Robert	
  Maier)	
  
9)  Octree	
  TSDF	
  Volume	
  (Robert	
  Maier)	
  
10)  Dense	
  Visual	
  Odometry	
  (Robert	
  Maier)	
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Matching Deformable 3D Shapes 
Supervisor: Dr. Emanuele Rodolà 

State-of-the-art: 
Solution that transfers functions to functions. 

How to convert to a 
solution that maps 
points to points? 

Our solution is an intrinsic 
variant of ICP for deformable 
shapes. 
 
We have Matlab/C++ code to 
compare against. 



Shortest Path
Parallel Computation

Dr. Frank Schmidt, Dr. Emanuele Rodolà



  

Nonlinear Shape Registration
Registration: find the geometric deformation between the shapes (i.e. binary image)

Sub-tasks of the problem
● Calculate image moments

sum of the power of pixel coordinates
● Calculate efficiently Thin Plate Spline (TPS) 

transformation of a shape
● Solve a system of non-linear equations via 

Levenberg-Marquardt algorithm
● standard algorithm for nonlinear minimization
● there already exist some implementation in Cuda 

● Optional: interface for Python or Matlab

An interesting and relevant problem in image processing
You can learn something about nonlinear function minimization

Materials
● The paper of the method is available

https://docs.google.com/file/d/0B6gqeZujyM56c1k4SGhaZzNjX1U/edit?usp=sharing
● The reference implementation in Matlab is also available
● The first author would be happy to discuss about relating questions

https://sites.google.com/site/cdomokosres/



Depth-­‐Adap*ve	
  Super	
  Pixels	
  	
  

[1]	
  Achanta,	
  Radhakrishna,	
  et	
  al.	
  "SLIC	
  superpixels	
  compared	
  to	
  state-­‐of-­‐the-­‐art	
  superpixel	
  methods.”,	
  IEEE	
  Transac*ons	
  on	
  Pa#ern	
  Analysis	
  and	
  Machine	
  Intelligence	
  (2012).	
  
[2]	
  Weikersdorfer	
  et.	
  al.	
  "Depth-­‐adap*ve	
  superpixels.”,	
  IEEE	
  Interna*onal	
  Conference	
  on	
  Pa#ern	
  Recogni<on	
  (2012).	
  

Idea:	
  Group	
  pixels	
  into	
  perceptually	
  meaningful	
  regions,	
  taking	
  depth	
  into	
  considera*on.	
  	
  
Task:	
  
•  Compute	
  a	
  superpixel	
  density	
  at	
  each	
  pixel.	
  
•  Sample	
  cluster	
  seeds	
  according	
  to	
  this	
  density.	
  
•  For	
  each	
  pixel	
  compute	
  a	
  9-­‐dimensional	
  	
  

feature	
  representa*on.	
  
•  Run	
  an	
  itera*ve	
  k-­‐means	
  algorithm.	
  
•  Op*onal:	
  segmenta*on	
  (spectral	
  graph	
  theory).	
  
Available	
  material:	
  
•  CUDA	
  implementa*on	
  of	
  [1]	
  	
  

	
  	
  	
  hTps://github.com/painnick/gSLIC/tree/master/gSLIC	
  
•  CPU	
  implementa*on	
  of	
  [2]	
  

	
  	
  	
  hTps://github.com/Danvil/asp	
  

Depth-Adaptive Superpixels

David Weikersdorfer, David Gossow, Michael Beetz
Intelligent Autonomous Systems Group, Technische Universität München.

[weikersd—gossow—beetz]@cs.tum.edu

Abstract

We propose a novel oversegmentation technique for
RGB-D images. The visible surface of the 3D geome-
try is partitioned into uniformly distributed and equally
sized planar patches. This results in a classic over-
segmentation of pixels into depth-adaptive superpixels
which correctly reflect deformation through perspec-
tive projection. The advantages of depth-adaptive su-
perpixels (DASP) are demonstrated by using spectral
graph theory to create image segmentations in near
realtime. Our algorithms outperform state-of-the-art
oversegmentation and image segmentation algorithms
both in quality and runtime.

1 Introduction

Following [7], image segmentation divides an im-
age into regions which fulfill two criteria: intra-region
similarity and inter-region dissimilarity. Oversegmen-
tation into superpixels focuses on intra-region similar-
ity, possibly dividing an image into more segments than
necessary. An oversegmentation greatly reduces scene
complexity and can be used as the basis of advanced
and expensive algorithms. Recent oversegmentation al-
gorithms like Turbopixels [5] and SLIC [1] addition-
ally have the property that the image is covered uni-
formly with superpixels of similar size. Turbopixels use
a geometric-flow-based algorithm which in addition as-
sures connectivity and compactness.

Since the advent of the Microsoft Kinect device [9],
RGB-D sensors have become available for a wide range
of applications. In this paper we contribute two al-
gorithms, oversegmentation (DASP) and segmentation
(sDASP), that make use of the additional depth infor-
mation in order to simplify the segmentation task (see
figure 1). In section 2 and 3, we describe an overseg-
mentation algorithm, which partitions the visible scene
geometry into uniformly distributed near-planar surface
patches. Due to its efficiency, we keep the notion of

(a) Color input image (b) Depth input values

(c) Depth-adaptive superpixels (d) Segments from sDASP

Figure 1. Superpixels and segments

a two-dimensional image and instead deform the shape
of local neighborhoods in image space according to the
perspective distortion and scaling. In section 4, we
show how spectral graph theory [8] can be used on top
of depth-adaptive superpixels to generate a full segmen-
tation of the image. Our method is general and can be
used to compute segmentations from any oversegmenta-
tion. Our evaluation in section 5 shows that both meth-
ods achieve significantly better performance than state-
of-the art algorithms which only consider pixel color.

2 Depth-Adaptive Superpixels

Given depth values p
⇣
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(a) Image with DASP borders (b) Superpixel density (c) Sampled cluster seeds (d) Centers after 20 iterations

Figure 2. Color image, cluster density (left) and cluster seeds and centers (right)

Using knowledge of the scene geometry surface, the
principle of superpixels can be transferred to 3D space.
We aim to compute an oversegmentation of the surface
into uniformly distributed, planar patches with a fixed
radius R. The parameter R corresponds to the minimal
size of interesting features and has to be chosen depend-
ing on the application domain.

The visible part of the surface can be parametrized
by the pixel grid. Thus, a 3D oversegmentation of sur-
face points is dual to a 2D oversegmentation of pix-
els. When projecting surface patches onto the im-
age plane, they are distorted by perspective projection,
corresponding to a non-uniform oversegmentation into
depth-adaptive superpixels in the image space. To guar-
antee equal size of surface patches, the density of su-
perpixels has to increase with distance from the camera
and inclination of the surface normal relative to view
direction. To assure that surface patches are distributed
uniformly, i.e. under a Poisson disk distribution, sam-
ples drawn from the density distribution need to have a
spectrum with blue noise characteristics [3].

Desirable segment borders include color, texture and
geometry edges. While image-based approaches have
to rely on the fact that often, geometric edges go along
with changes in color and texture, the use of the 3d point
and normal corresponding to each pixel makes it possi-
ble to respect geometry directly. In our case, it is suffi-
cient to estimate the normal p

n

using the depth gradient
r⇣(p
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, p
i

) computed from finite differences:
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2 and compute d
p

as the size of d
w

projected into the image plane (see Eq. 3).

3 The DASP algorithm

We proceed in three steps. First, the density of su-
perpixel clusters in the image space is computed from
the depth image. Second, we use an efficient method
to sample points which will guarantee the blue-noise

spectrum property. Third, a clustering algorithm assigns
points to superpixels and improves superpixel centers.

The density of superpixel seeds at pixel (p
j

, p
i

) can
be computed by considering a disk with radius R whose
center point is at depth ⇣(p

j
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i

) and projected into pixel
(p
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i

) on the image sensor [4]. The projected radius
of this disk is computed using the trivial equation
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For surfaces parts that are not parallel to the image
plane, one has to compute the perspective distortion.
We locally approximate this with an affine deformation
by considering the local depth gradient r⇣(p
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). This
gives the projected area of the disk as
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The density of superpixels is directly computed as
⇢(p

j

, p
i

) / 1
Ap(pj ,pi)

. Figure 2 shows superpixel den-
sity and sampled seeds for an example image. The
bumpy pattern results from noisy depth measurements.

Fattal [3] describes an efficient method to draw
blue-noise point samples using a multi-scale sampling
scheme. Initially, few points are distributed using the
lowest density frequency and shifted into an optimal
configuration using the Langevin method. This pro-
cess is repeated iteratively for higher frequencies by us-
ing the point configuration of the previous step, split-
ting points if necessary and optimizing again. In or-
der to achieve realtime performance, we use the basic
idea of multi-scale sampling, but do not perform the
Langevin step. During the pixel clustering step, su-
perpixel centers are automatically shifted into a clus-
ter configuration which approximately satisfies the blue
noise spectrum property in addition to flatness and color
constraints (see figure 2).

Similar to SLIC, pixels are assigned to superpixel
clusters using an iterative k-means algorithm with a cus-
tomized metric. As superpixel clusters only change lo-
cally, the search radius during a k-means iteration can

(a) Image with DASP borders (b) Superpixel density (c) Sampled cluster seeds (d) Centers after 20 iterations

Figure 2. Color image, cluster density (left) and cluster seeds and centers (right)
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Joint Motion Estimation and Image Reconstruction

(a) Input frames f (b) Denoised frames (c) Estimated flow

Energy minimization approach:

min
u,v

∫ T

0

1

2
‖u − f ‖22 + α ‖∇u‖1︸ ︷︷ ︸

TV denoising

+β ‖∇v‖1︸ ︷︷ ︸
Flow regularity

+γ ‖ut +∇u · v‖1︸ ︷︷ ︸
Coupling

dt

From: Hendrik Dirks, PhD Thesis 2015.
Joint Motion Estimation and Image Reconstruction



Joint Motion Estimation and Image Reconstruction
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Joint Motion Estimation and Image Reconstruction

Extended energy minimization approach:

min
u,v

∫ T

0

1

2
‖Ku − f ‖22 + α ‖∇u‖1︸ ︷︷ ︸

TV super resolution

+β ‖∇v‖1︸ ︷︷ ︸
Flow regularity

+γ ‖ut +∇u · v‖1︸ ︷︷ ︸
Coupling

dt

First image: Unger, Pock, Werlberger, Bischof 2010.
Second image: Goldlücke, Aubry, Kolev, Cremers 2014.

Joint Motion Estimation and Image Reconstruction



Computer	
  Vision	
  Group	
  

Varia0onal	
  Super-­‐resolu0on	
  
•  Input:	
  several	
  low-­‐res.	
  RGB	
  images	
  (RGB-­‐D	
  frames)	
  
•  Goal:	
  obtain	
  high-­‐res.	
  image	
  (sharper	
  than	
  input	
  images)	
  

•  Reason:	
  every	
  surface	
  patch	
  observed	
  in	
  mul0ple	
  images	
  
	
  -­‐>	
  invert	
  blurring	
  and	
  downsampling	
  

•  Reference:	
  A	
  Convex	
  Approach	
  for	
  Varia0onal	
  Super-­‐
Resolu0on	
  [Unger	
  et	
  al,	
  2010]	
  



Computer	
  Vision	
  Group	
  

RGB-­‐D	
  Keyframe	
  Fusion	
  
•  Idea:	
  fuse	
  low-­‐res.	
  input	
  RGB-­‐D	
  frames	
  into	
  high	
  
resolu0on	
  RGB-­‐D	
  keyframes	
  
–  Depth	
  fusion	
  (warp,	
  upsample,	
  fuse)	
  
–  Color	
  fusion	
  (Deblur,	
  warp,	
  fuse)	
  

LR	
  input	
  frame	
   Fused	
  SR	
  keyframe	
  



Computer	
  Vision	
  Group	
  

TSDF	
  Volume	
  
•  KinectFusion	
  [Newcombe	
  et	
  al,	
  ISMAR	
  2011]:	
  Real-­‐0me	
  

dense	
  3D	
  reconstruc0on	
  from	
  RGB-­‐D	
  sensors	
  

3D	
  surface	
  extrac0on:	
  
Marching	
  Cubes	
  

3D-­‐Model:	
  Truncated	
  Signed	
  Distance	
  Volume	
  
Camera-­‐Tracking:	
  	
  
ICP	
  +	
  Raycas0ng	
  

•  3D	
  reconstruc0on	
  algorithm:	
  

•  Idea:	
  Median	
  Color	
  Fusion	
  



Computer	
  Vision	
  Group	
  

Octree	
  TSDF	
  Volume	
  
•  TSDF	
  voxel	
  grid:	
  limited	
  3D	
  volume	
  size	
  and/or	
  

resolu0on,	
  high	
  memory	
  consump0on	
  
•  Idea:	
  Use	
  more	
  memory	
  efficient	
  3D	
  scene	
  

representa0on	
  based	
  on	
  an	
  Octree	
  

•  Reference:	
  Octree-­‐based	
  fusion	
  for	
  real0me	
  3D	
  
reconstruc0on	
  [Zeng	
  et	
  al.,	
  2013]	
  



Computer	
  Vision	
  Group	
  

•  Robust	
  Odometry	
  Es0ma0on	
  for	
  RGB-­‐D	
  Cameras	
  
–  Given:	
  Two	
  RGB-­‐D	
  frames	
  

–  Goal:	
  es0mate	
  camera	
  mo0on	
  	
  
	
  g*	
  by	
  minimizing	
  photometric	
  	
  
	
  and	
  geometric	
  error	
  	
  

•  Real-­‐0me	
  CPU	
  implementa0on	
  (320x240)	
  
•  Reference:	
  Robust	
  Odometry	
  Es0ma0on	
  for	
  RGB-­‐D	
  Cameras	
  

[Kerl	
  et	
  al,	
  ICRA	
  2013]	
  

Dense	
  Visual	
  Odometry	
  



Computer	
  Vision	
  Group	
  

Next	
  steps	
  

•  Today:	
  send	
  email	
  to	
  cuda-­‐ss15@in.tum.de	
  
–  Group	
  Members	
  
–  Your	
  3	
  favorite	
  topics	
  

•  Ader	
  project	
  assignments:	
  meet	
  with	
  your	
  supervisor	
  
	
  
•  Any	
  ques0ons?	
  


