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Computer	  Vision	  Group	  

•  Form	  groups	  of	  3	  people	  

•  Implement	  a	  computer	  vision	  algorithm	  in	  CUDA	  
–  Select	  your	  3	  favorite	  topics	  
– We	  will	  assign	  the	  projects	  to	  the	  groups	  

•  Regular	  meeFngs	  with	  your	  supervisor	  
•  Send	  source	  code	  to	  your	  supervisor	  unFl	  Oct	  7	  

•  CheaFng:	  all	  involved	  groups	  will	  get	  the	  grade	  5.0	  

Project	  Phase	  (Sept	  14	  -‐	  Oct	  2)	  
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Computer	  Vision	  Group	  

PresentaFons	  (Oct	  5/6)	  

•  15	  minutes	  per	  group	  
•  Prepare	  slides	  
– Explain	  the	  task	  
– Explain	  how	  you	  proceeded	  to	  solve	  the	  task	  
– Show	  your	  results	  

•  Live	  demo	  
•  Q&A	  session	  
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Computer	  Vision	  Group	  

Final	  Project	  Proposals	  
Implement	  your	  own	  project	  idea?	  

1)  Matching	  Deformable	  3D	  Shapes	  (Emanuele	  Rodola)	  
2)  Shortest	  Path	  Parallel	  ComputaFon	  (Frank	  R.	  Schmidt,	  Emanuele	  Rodola)	  
3)  Nonlinear	  Shape	  RegistraFon	  (Csaba	  Domokos)	  
4)  Depth-‐AdapFve	  Superpixels	  (Lingni	  Ma,	  Thomas	  Möllenhoff)	  
5)  Joint	  MoFon	  EsFmaFon	  and	  Image	  ReconstrucFon	  (Michael	  Möller)	  
6)  VariaFonal	  Super-‐resoluFon	  (Robert	  Maier,	  Thomas	  Möllenhoff)	  
7)  RGB-‐D	  Keyframe	  Fusion	  (Robert	  Maier)	  
8)  TSDF	  Volume	  with	  Median	  Color	  Fusion	  (Robert	  Maier)	  
9)  Octree	  TSDF	  Volume	  (Robert	  Maier)	  
10)  Dense	  Visual	  Odometry	  (Robert	  Maier)	  
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Matching Deformable 3D Shapes 
Supervisor: Dr. Emanuele Rodolà 

State-of-the-art: 
Solution that transfers functions to functions. 

How to convert to a 
solution that maps 
points to points? 

Our solution is an intrinsic 
variant of ICP for deformable 
shapes. 
 
We have Matlab/C++ code to 
compare against. 



Shortest Path
Parallel Computation

Dr. Frank Schmidt, Dr. Emanuele Rodolà



  

Nonlinear Shape Registration
Registration: find the geometric deformation between the shapes (i.e. binary image)

Sub-tasks of the problem
● Calculate image moments

sum of the power of pixel coordinates
● Calculate efficiently Thin Plate Spline (TPS) 

transformation of a shape
● Solve a system of non-linear equations via 

Levenberg-Marquardt algorithm
● standard algorithm for nonlinear minimization
● there already exist some implementation in Cuda 

● Optional: interface for Python or Matlab

An interesting and relevant problem in image processing
You can learn something about nonlinear function minimization

Materials
● The paper of the method is available

https://docs.google.com/file/d/0B6gqeZujyM56c1k4SGhaZzNjX1U/edit?usp=sharing
● The reference implementation in Matlab is also available
● The first author would be happy to discuss about relating questions

https://sites.google.com/site/cdomokosres/



Depth-‐Adap*ve	  Super	  Pixels	  	  

[1]	  Achanta,	  Radhakrishna,	  et	  al.	  "SLIC	  superpixels	  compared	  to	  state-‐of-‐the-‐art	  superpixel	  methods.”,	  IEEE	  Transac*ons	  on	  Pa#ern	  Analysis	  and	  Machine	  Intelligence	  (2012).	  
[2]	  Weikersdorfer	  et.	  al.	  "Depth-‐adap*ve	  superpixels.”,	  IEEE	  Interna*onal	  Conference	  on	  Pa#ern	  Recogni<on	  (2012).	  

Idea:	  Group	  pixels	  into	  perceptually	  meaningful	  regions,	  taking	  depth	  into	  considera*on.	  	  
Task:	  
•  Compute	  a	  superpixel	  density	  at	  each	  pixel.	  
•  Sample	  cluster	  seeds	  according	  to	  this	  density.	  
•  For	  each	  pixel	  compute	  a	  9-‐dimensional	  	  

feature	  representa*on.	  
•  Run	  an	  itera*ve	  k-‐means	  algorithm.	  
•  Op*onal:	  segmenta*on	  (spectral	  graph	  theory).	  
Available	  material:	  
•  CUDA	  implementa*on	  of	  [1]	  	  

	  	  	  hTps://github.com/painnick/gSLIC/tree/master/gSLIC	  
•  CPU	  implementa*on	  of	  [2]	  

	  	  	  hTps://github.com/Danvil/asp	  

Depth-Adaptive Superpixels

David Weikersdorfer, David Gossow, Michael Beetz
Intelligent Autonomous Systems Group, Technische Universität München.

[weikersd—gossow—beetz]@cs.tum.edu

Abstract

We propose a novel oversegmentation technique for
RGB-D images. The visible surface of the 3D geome-
try is partitioned into uniformly distributed and equally
sized planar patches. This results in a classic over-
segmentation of pixels into depth-adaptive superpixels
which correctly reflect deformation through perspec-
tive projection. The advantages of depth-adaptive su-
perpixels (DASP) are demonstrated by using spectral
graph theory to create image segmentations in near
realtime. Our algorithms outperform state-of-the-art
oversegmentation and image segmentation algorithms
both in quality and runtime.

1 Introduction

Following [7], image segmentation divides an im-
age into regions which fulfill two criteria: intra-region
similarity and inter-region dissimilarity. Oversegmen-
tation into superpixels focuses on intra-region similar-
ity, possibly dividing an image into more segments than
necessary. An oversegmentation greatly reduces scene
complexity and can be used as the basis of advanced
and expensive algorithms. Recent oversegmentation al-
gorithms like Turbopixels [5] and SLIC [1] addition-
ally have the property that the image is covered uni-
formly with superpixels of similar size. Turbopixels use
a geometric-flow-based algorithm which in addition as-
sures connectivity and compactness.

Since the advent of the Microsoft Kinect device [9],
RGB-D sensors have become available for a wide range
of applications. In this paper we contribute two al-
gorithms, oversegmentation (DASP) and segmentation
(sDASP), that make use of the additional depth infor-
mation in order to simplify the segmentation task (see
figure 1). In section 2 and 3, we describe an overseg-
mentation algorithm, which partitions the visible scene
geometry into uniformly distributed near-planar surface
patches. Due to its efficiency, we keep the notion of

(a) Color input image (b) Depth input values

(c) Depth-adaptive superpixels (d) Segments from sDASP

Figure 1. Superpixels and segments

a two-dimensional image and instead deform the shape
of local neighborhoods in image space according to the
perspective distortion and scaling. In section 4, we
show how spectral graph theory [8] can be used on top
of depth-adaptive superpixels to generate a full segmen-
tation of the image. Our method is general and can be
used to compute segmentations from any oversegmenta-
tion. Our evaluation in section 5 shows that both meth-
ods achieve significantly better performance than state-
of-the art algorithms which only consider pixel color.
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(a) Image with DASP borders (b) Superpixel density (c) Sampled cluster seeds (d) Centers after 20 iterations

Figure 2. Color image, cluster density (left) and cluster seeds and centers (right)

Using knowledge of the scene geometry surface, the
principle of superpixels can be transferred to 3D space.
We aim to compute an oversegmentation of the surface
into uniformly distributed, planar patches with a fixed
radius R. The parameter R corresponds to the minimal
size of interesting features and has to be chosen depend-
ing on the application domain.

The visible part of the surface can be parametrized
by the pixel grid. Thus, a 3D oversegmentation of sur-
face points is dual to a 2D oversegmentation of pix-
els. When projecting surface patches onto the im-
age plane, they are distorted by perspective projection,
corresponding to a non-uniform oversegmentation into
depth-adaptive superpixels in the image space. To guar-
antee equal size of surface patches, the density of su-
perpixels has to increase with distance from the camera
and inclination of the surface normal relative to view
direction. To assure that surface patches are distributed
uniformly, i.e. under a Poisson disk distribution, sam-
ples drawn from the density distribution need to have a
spectrum with blue noise characteristics [3].

Desirable segment borders include color, texture and
geometry edges. While image-based approaches have
to rely on the fact that often, geometric edges go along
with changes in color and texture, the use of the 3d point
and normal corresponding to each pixel makes it possi-
ble to respect geometry directly. In our case, it is suffi-
cient to estimate the normal p

n

using the depth gradient
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3 The DASP algorithm

We proceed in three steps. First, the density of su-
perpixel clusters in the image space is computed from
the depth image. Second, we use an efficient method
to sample points which will guarantee the blue-noise

spectrum property. Third, a clustering algorithm assigns
points to superpixels and improves superpixel centers.
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For surfaces parts that are not parallel to the image
plane, one has to compute the perspective distortion.
We locally approximate this with an affine deformation
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The density of superpixels is directly computed as
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. Figure 2 shows superpixel den-
sity and sampled seeds for an example image. The
bumpy pattern results from noisy depth measurements.

Fattal [3] describes an efficient method to draw
blue-noise point samples using a multi-scale sampling
scheme. Initially, few points are distributed using the
lowest density frequency and shifted into an optimal
configuration using the Langevin method. This pro-
cess is repeated iteratively for higher frequencies by us-
ing the point configuration of the previous step, split-
ting points if necessary and optimizing again. In or-
der to achieve realtime performance, we use the basic
idea of multi-scale sampling, but do not perform the
Langevin step. During the pixel clustering step, su-
perpixel centers are automatically shifted into a clus-
ter configuration which approximately satisfies the blue
noise spectrum property in addition to flatness and color
constraints (see figure 2).

Similar to SLIC, pixels are assigned to superpixel
clusters using an iterative k-means algorithm with a cus-
tomized metric. As superpixel clusters only change lo-
cally, the search radius during a k-means iteration can

(a) Image with DASP borders (b) Superpixel density (c) Sampled cluster seeds (d) Centers after 20 iterations

Figure 2. Color image, cluster density (left) and cluster seeds and centers (right)
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Joint Motion Estimation and Image Reconstruction

(a) Input frames f (b) Denoised frames (c) Estimated flow

Energy minimization approach:

min
u,v

∫ T

0

1

2
‖u − f ‖22 + α ‖∇u‖1︸ ︷︷ ︸

TV denoising

+β ‖∇v‖1︸ ︷︷ ︸
Flow regularity

+γ ‖ut +∇u · v‖1︸ ︷︷ ︸
Coupling

dt

From: Hendrik Dirks, PhD Thesis 2015.
Joint Motion Estimation and Image Reconstruction
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Joint Motion Estimation and Image Reconstruction

Extended energy minimization approach:

min
u,v

∫ T

0

1

2
‖Ku − f ‖22 + α ‖∇u‖1︸ ︷︷ ︸

TV super resolution

+β ‖∇v‖1︸ ︷︷ ︸
Flow regularity

+γ ‖ut +∇u · v‖1︸ ︷︷ ︸
Coupling

dt

First image: Unger, Pock, Werlberger, Bischof 2010.
Second image: Goldlücke, Aubry, Kolev, Cremers 2014.

Joint Motion Estimation and Image Reconstruction



Computer	  Vision	  Group	  

Varia0onal	  Super-‐resolu0on	  
•  Input:	  several	  low-‐res.	  RGB	  images	  (RGB-‐D	  frames)	  
•  Goal:	  obtain	  high-‐res.	  image	  (sharper	  than	  input	  images)	  

•  Reason:	  every	  surface	  patch	  observed	  in	  mul0ple	  images	  
	  -‐>	  invert	  blurring	  and	  downsampling	  

•  Reference:	  A	  Convex	  Approach	  for	  Varia0onal	  Super-‐
Resolu0on	  [Unger	  et	  al,	  2010]	  



Computer	  Vision	  Group	  

RGB-‐D	  Keyframe	  Fusion	  
•  Idea:	  fuse	  low-‐res.	  input	  RGB-‐D	  frames	  into	  high	  
resolu0on	  RGB-‐D	  keyframes	  
–  Depth	  fusion	  (warp,	  upsample,	  fuse)	  
–  Color	  fusion	  (Deblur,	  warp,	  fuse)	  

LR	  input	  frame	   Fused	  SR	  keyframe	  



Computer	  Vision	  Group	  

TSDF	  Volume	  
•  KinectFusion	  [Newcombe	  et	  al,	  ISMAR	  2011]:	  Real-‐0me	  

dense	  3D	  reconstruc0on	  from	  RGB-‐D	  sensors	  

3D	  surface	  extrac0on:	  
Marching	  Cubes	  

3D-‐Model:	  Truncated	  Signed	  Distance	  Volume	  
Camera-‐Tracking:	  	  
ICP	  +	  Raycas0ng	  

•  3D	  reconstruc0on	  algorithm:	  

•  Idea:	  Median	  Color	  Fusion	  



Computer	  Vision	  Group	  

Octree	  TSDF	  Volume	  
•  TSDF	  voxel	  grid:	  limited	  3D	  volume	  size	  and/or	  

resolu0on,	  high	  memory	  consump0on	  
•  Idea:	  Use	  more	  memory	  efficient	  3D	  scene	  

representa0on	  based	  on	  an	  Octree	  

•  Reference:	  Octree-‐based	  fusion	  for	  real0me	  3D	  
reconstruc0on	  [Zeng	  et	  al.,	  2013]	  



Computer	  Vision	  Group	  

•  Robust	  Odometry	  Es0ma0on	  for	  RGB-‐D	  Cameras	  
–  Given:	  Two	  RGB-‐D	  frames	  

–  Goal:	  es0mate	  camera	  mo0on	  	  
	  g*	  by	  minimizing	  photometric	  	  
	  and	  geometric	  error	  	  

•  Real-‐0me	  CPU	  implementa0on	  (320x240)	  
•  Reference:	  Robust	  Odometry	  Es0ma0on	  for	  RGB-‐D	  Cameras	  

[Kerl	  et	  al,	  ICRA	  2013]	  

Dense	  Visual	  Odometry	  



Computer	  Vision	  Group	  

Next	  steps	  

•  Today:	  send	  email	  to	  cuda-‐ss15@in.tum.de	  
–  Group	  Members	  
–  Your	  3	  favorite	  topics	  

•  Ader	  project	  assignments:	  meet	  with	  your	  supervisor	  
	  
•  Any	  ques0ons?	  


