GPU Programming in Computer Vision

Summer Semester 2015

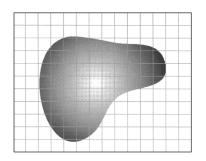
Thomas Möllenhoff, Robert Maier, Caner Hazirbas

Continuous Setting

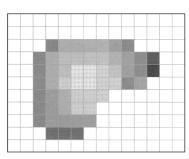
Continuous setting

We view images as being defined on a $\it continuous$ demain $\Omega.$ Images are $\it functions$

$$u:\Omega\to\mathbb{R}^n$$



continuous setting



discrete setting

Representing Images as Functions

Image are functions

$$u:\Omega\to\mathbb{R}^n$$

Domain Ω (a rectangular subset of \mathbb{R}^d)

 $\Omega \subset \mathbb{R}^1$: signal (1D) $\Omega \subset \mathbb{R}^2$: image (2D) $\Omega \subset \mathbb{R}^3$: volume (3D)

Range \mathbb{R}^n

 \mathbb{R}^1 : grayscale images, . . .

 \mathbb{R}^2 : 2D-vector fields, . . .

 $\mathbb{R}^3\colon \mathsf{RGB}$ images, HSV values, normals, . . .

 \mathbb{R}^4 : matrix valued images, . . .

We will represent *multi-channel* images by *n single-valued images*:

$$u = (u_1, \ldots, u_n), \quad u(x) = (u_1(x), \ldots, u_n(x)) \in \mathbb{R}^n$$

We assume a two-dimensional domain: $\Omega \subset \mathbb{R}^2$.

Partial derivative w.r.t. x of a scalar image $u: \Omega \to \mathbb{R}$

$$\partial_{x}u:\Omega\to\mathbb{R},\quad (\partial_{x}u)(x,y)=\lim_{h\to 0}\frac{u(x+h,y)-u(x,y)}{h}$$

Partial derivative w.r.t. y of a scalar image $u: \Omega \to \mathbb{R}$

$$\partial_y u: \Omega \to \mathbb{R}, \quad (\partial_y u)(x,y) = \lim_{h \to 0} \frac{u(x,y+h) - u(x,y)}{h}$$

Multi-channel images u : $\Omega \to \mathbb{R}^n$: Component-wise

Gradient of a scalar image $u: \Omega \to \mathbb{R}$

The gradient combines all partial derivatives into a vector:

$$\nabla u: \Omega \to \mathbb{R}^2, \quad (\nabla u)(x,y) = \begin{pmatrix} (\partial_x u)(x,y) \\ (\partial_y u)(x,y) \end{pmatrix}$$

This vector is the direction of the *fastest increase* of *u*.

Multi-channel images u : $\Omega \to \mathbb{R}^n$: One gradient per channel:

$$\nabla u: \Omega \to (\mathbb{R}^2)^n, \quad \nabla u = (\nabla u_1, \dots, \nabla u_n)$$

Divergence of a 2D-vector field $u: \Omega \to \mathbb{R}^2$

This operator needs a vector field as input. The result is a scalar function:

$$\operatorname{div} u: \Omega \to \mathbb{R}, \quad (\operatorname{div} u)(x,y) = (\partial_x u_1)(x,y) + (\partial_y u_2)(x,y)$$

Multi-channel 2D-vector fields $u: \Omega \to (\mathbb{R}^2)^n$: Divergence per channel:

$$\operatorname{div} u : \Omega \to \mathbb{R}^n$$
, $\operatorname{div} u = (\operatorname{div} u_1, \dots, \operatorname{div} u_n)$

Gradient magnitude of a scalar image

Pointwise absolute value of ∇u : $|\nabla u|: \Omega \to \mathbb{R}$,

$$(|\nabla u|)(x,y) := |(\nabla u)(x,y)| = \sqrt{(\partial_x u)(x,y)^2 + (\partial_y u)(x,y)^2}$$

This often serves as an edge detector: big values $|(\nabla u)(x,y)|$ indicate an edge at (x,y).

Multi-channel images u : $\Omega \to \mathbb{R}^n$: Norm over all partial derivatives:

$$(|\nabla u|)(x,y):=\sqrt{\sum_{i=1}^n|(\nabla u_i)(x,y)|^2}=\sqrt{\sum_{i=1}^n\left((\partial_x u_i)(x,y)^2+(\partial_y u_i)(x,y)^2\right)}$$

Laplacian of a scalar image $u:\Omega\to\mathbb{R}$

The gradient $\nabla u:\Omega\to\mathbb{R}^2$ is a 2D-vector field, and divergence div operates on 2D-vector fields. Thus, we can concatenate these two operators. The result is the *Laplacian*:

$$\Delta u : \Omega \to \mathbb{R}, \quad \Delta u := \operatorname{div}(\nabla u) = \operatorname{div}\begin{pmatrix} \partial_x u \\ \partial_y u \end{pmatrix}$$

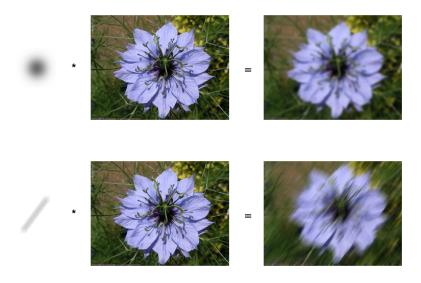
$$(\Delta u)(x, y) = (\partial_{xx} u)(x, y) + (\partial_{yy} u)(x, y)$$

The Laplacian is useful in *physical models*. For example, if u(x,y) is the temperature at each point (x,y), then Δu is the rate of local temperature decrease: $(\partial_t u)(x,y) = a(\Delta u)(x,y)$ for some a>0.

Multi-channel images u : $\Omega \to \mathbb{R}^n$: Component-wise

Convolution

Convolution computes a weighted sum of the image values.



Convolution

Convolution

Given a kernel $K : \mathbb{R}^2 \to \mathbb{R}$ and a multi-channel image $u : \Omega \to \mathbb{R}^n$:

$$K*u:\Omega\to\mathbb{R}^n,\quad (K*u)(x,y)=\int_{\mathbb{R}^2}K(a,b)\,u(x-a,y-b)\,da\,db$$

(channel-wise). This sums up the u values around (x, y), weighted by K.

Definition at the boundary of image domain

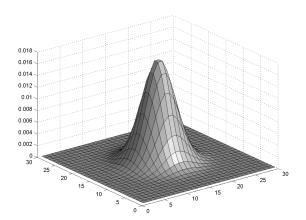
The formula needs values of u outside of the definition domain Ω . Common ways to resolve this:

- Clamping of (x, y) back to Ω (we will use this approach)
- Periodic boundary conditions (allows application of FFT)
- Mirroring boundary conditions

Convolution

2D-Gaussian kernel with a standard deviation $\sigma > 0$

$$K(a,b)=G_{\sigma}(a,b):=rac{1}{2\pi\sigma^2}\,\mathrm{e}^{-rac{a^2+b^2}{2\sigma^2}}$$



Discretization: Images

The image domain $\Omega \subset \mathbb{R}^2$ is discretized into a 2D-grid of $W \times H$ pixels.

Linearized storage for scalar images $u: \Omega \to \mathbb{R}$

The WH values u(x, y) are arranged as a *single one-dimensional array u*. Usually, one uses a *row-by-row* order:

$$u = \left(u(0,0), u(1,0), u(2,0), \dots, u(W-1,0), \right.$$

$$u(0,1), u(1,1), u(2,1), \dots, u(W-1,1), \dots, \left. u(0,H-1), u(1,H-1), u(2,H-1), \dots, u(W-1,H-1) \right).$$

Linearized access

$$u(x,y) = u[x + W \cdot y]$$

Discretization: Images

Linearized storage of multi-channel images $u: \Omega \to \mathbb{R}^n$

The *nWH* values $u_i(x, y)$ are arranged as a *single one-dimensional array*. The *n* channels u_i are stored *directly one after another*

$$u=(u_1,u_2,\ldots,u_n)$$

and, as previously, each channel u_i is stored in row-by-row order.

This is called *layered* storage, and we will use this variant. (Another possiblity is interleaved storage: save the n values $u_i(x, y)$ pixel-by-pixel. For example, this is used by OpenCV.)

Linearized access

$$u_i(x,y) = u[x + W \cdot y + WH \cdot i]$$

C/C++

To support potentially *very large* images, *always* compute the products using the size_t type: x + (size_t)W*y + (size_t)W*H*i.

Gradient

Forward differences:

$$(\nabla^+ u)(x,y) = \begin{pmatrix} (\partial_x^+ u)(x,y) \\ (\partial_y^+ u)(x,y) \end{pmatrix}$$

Forward differences (with Neumann boundary conditions)

$$(\partial_x^+ u)(x,y) := \begin{cases} u(x+1,y) - u(x,y) & \text{if } x+1 < W \\ 0 & \text{else} \end{cases}$$
$$(\partial_y^+ u)(x,y) := \begin{cases} u(x,y+1) - u(x,y) & \text{if } y+1 < H \\ 0 & \text{else} \end{cases}$$

This assumes that u has slope 0 at the boundary: $\partial_{\text{normal}_{\Omega}} u = 0$.

Divergence

Backward differences:

$$(\operatorname{div}^- u)(x,y) = (\partial_x^- u_1)(x,y) + (\partial_y^- u_2)(x,y)$$

Backward differences (with Dirichlet boundary conditions)

$$(\partial_x^- u)(x,y) := \begin{cases} u(x,y) & \text{if } x+1 < W \\ 0 & \text{else} \end{cases} - \begin{cases} u(x-1,y) & \text{if } x>0 \\ 0 & \text{else} \end{cases}$$

$$(\partial_y^- u)(x,y) := \begin{cases} u(x,y) & \text{if } y+1 < H \\ 0 & \text{else} \end{cases} - \begin{cases} u(x,y-1) & \text{if } y>0 \\ 0 & \text{else} \end{cases}$$

This assumes that u has zero values at the boundary.

Laplacian

According to ∇^+ and div $^-$:

$$\Delta u = \operatorname{div}^-(\nabla^+ u) = \partial_x^-(\partial_x^+ u) + \partial_y^-(\partial_y^+ u)$$

This means

$$(\Delta u)(x,y) = \mathbf{1}_{x+1 < W} \cdot u(x+1,y) + \mathbf{1}_{x>0} \cdot u(x-1,y) + \mathbf{1}_{y+1 < H} \cdot u(x,y+1) + \mathbf{1}_{y>0} \cdot u(x,y-1) - \left((\mathbf{1}_{x+1 < W}) + (\mathbf{1}_{y+1 < H}) + (\mathbf{1}_{x>0}) + (\mathbf{1}_{y>0}) \right) \cdot u(x,y)$$

Here we define (and similarly for other factors):

$$\mathbf{1}_{x+1 < W} := \begin{cases} 1 & \text{if } x+1 < W, \\ 0 & \text{otherwise.} \end{cases}$$

Only compute u(x + 1, y) etc. if its factor is not zero!

Gradient

A more rotationally invariant discretization:

$$\partial_x^r u(x,y) := \frac{1}{32} \left(3u(x+1,y+1) + 10u(x+1,y) + 3u(x+1,y-1) -3u(x-1,y+1) - 10u(x-1,y) - 3u(x-1,y-1) \right)$$

$$\partial_y^r u(x,y) := \frac{1}{32} \left(3u(x+1,y+1) + 10u(x,y+1) + 3u(x-1,y+1) -3u(x+1,y-1) - 10u(x,y-1) - 3u(x-1,y-1) \right)$$

Neumann boundary conditions

If values u(x, y) in pixels outside of Ω are needed, clamp (x, y) back to Ω .

Discretization: Convolution

Discretization

Finite weighted sum:

$$(K*u)(x,y) = \sum_{(a,b)\in S_K} K(a,b) \cdot u(x-a,y-b)$$

Windowing

 S_K is the *support* of K: positions (a,b) with $K(a,b) \neq 0$. It is assumed to lie entirely in a *small window* of size $(2r_x + 1) \times (2r_y + 1)$:

$$(K*I)(x,y) = \sum_{a=-r_x}^{r_x} \sum_{b=-r_y}^{r_y} K(a,b) u(x-a,y-b) da db$$

Discretized kernel

One often deals with small-support kernels K, or the kernel is truncated artificially (e.g. *Gaussian kernel*). Discretized K is stored row-by-row: $K(x,y) = K[x + (2r_x + 1) \cdot y]$.

