GPU Programming in Computer Vision

Summer Semester 2015

Thomas Möllenhoff, Robert Maier, Caner Hazirbas

The structure tensor of an image

Given an input image $u: \Omega \rightarrow \mathbb{R}^{k}$, compute the smoothed version as $S:=G_{\sigma} * u$.
The structure tensor T of u is defined at each pixel (x, y) as the smoothing

$$
T:=G_{\rho} * M
$$

of the matrix

$$
M:=\nabla S \cdot \nabla S^{\top}=\left(\begin{array}{cc}
\left(\partial_{x} S\right)^{2} & \left(\partial_{x} S\right)\left(\partial_{y} S\right) \\
\left(\partial_{x} S\right)\left(\partial_{y} S\right) & \left(\partial_{y} S\right)^{2}
\end{array}\right)
$$

where $\sigma>0$ is called the inner scale, $\rho>0$ the outer scale.

- $T(x, y) \in \mathbb{R}^{2 \times 2}$ is symmetric and positive definite. It has two non-negative eigenvalues.
- How do its eigenvalues and eigenvectors look like?

Interpretation of the structure tensor

Consider the local distribution of partial derivatives around edges and corners.

Structure tensor as a Covariance Matrix

Treat $\partial_{x} S$ and $\partial_{y} S$ as random variables and assume $\mu_{1}:=\mathbb{E}\left[\partial_{x} S\right]=0$ and $\mu_{2}:=\mathbb{E}\left[\partial_{y} S\right]=0$.

Since convolution corresponds to taking the (weighted) expected value we have:

$$
\begin{aligned}
\operatorname{Cov}\left(\partial_{x} S, \partial_{y} S\right) & =\left(\begin{array}{cc}
\mathbb{E}\left[\left(\partial_{x} S-\mu_{1}\right)^{2}\right] & \mathbb{E}\left[\left(\partial_{x} S-\mu_{1}\right)\left(\partial_{y} S-\mu_{2}\right)\right] \\
\mathbb{E}\left[\left(\partial_{x} S-\mu_{1}\right)\left(\partial_{y} S-\mu_{2}\right)\right] & \mathbb{E}\left[\left(\partial_{y} S-\mu_{2}\right)^{2}\right]
\end{array}\right) \\
& =\left(\begin{array}{cc}
\mathbb{E}\left[\left(\partial_{x} S\right)^{2}\right] & \mathbb{E}\left[\left(\partial_{x} S\right)\left(\partial_{y} S\right)\right] \\
\mathbb{E}\left[\left(\partial_{x} S\right)\left(\partial_{y} S\right)\right] & \mathbb{E}\left[\left(\partial_{y} S\right)^{2}\right]
\end{array}\right) \\
& =\left(\begin{array}{cc}
G_{\rho} *\left(\partial_{x} S\right)^{2} & G_{\rho} *\left(\partial_{x} S\right)\left(\partial_{y} S\right) \\
G_{\rho} *\left(\partial_{x} S\right)\left(\partial_{y} S\right) & G_{\rho} *\left(\partial_{y} S\right)^{2}
\end{array}\right)=T .
\end{aligned}
$$

Interpretation of the structure tensor

- The fact that the structure tensor is as a covariance matrix allows for an immediate interpretation.
- The eigenvectors are the directions of principal axes and the eigenvalues the length of the principal axes.
- Allows for a simple edge/corner detector ("Harris corners").

$\lambda_{1} \approx \lambda_{2}$

λ_{1} large, λ_{2} small

λ_{1}, λ_{2} large

