GPU Programming in Computer Vision

Summer Semester 2015

Thomas Möllenhoff, Robert Maier, Caner Hazirbas

Image Evolutions

Image evolutions

Consider images which evolve over time

$$u:\Omega\times[0,T]\to\mathbb{R}^n$$

The image has now three parameters: u(x, y, t).

Discretized view

Generate a *sequence* of images $u^k : \Omega \to \mathbb{R}^n$ starting with some u^0 :

$$u^0, u^1, u^2, u^3, \dots$$

by a specific algorithm. Only the result u^{k_0} for some $k_0 \ge 1$ is of interest.

Diffusion

We will first consider grayscale images $u: \Omega \times [0, T] \to \mathbb{R}$, and later generalize to multi-channel images.

Diffusion

Continuous-time update equation

$$\partial_t u = \operatorname{div}(D\nabla u)$$

Starting with some image $u(t = 0) = u^0$, this tells how the image must be changed over time. ∇ and div are only w.r.t. spatial variables x, y.

Diffusion tensor

 $D: \Omega \times [0,T] \to \mathbb{R}^{2 \times 2}$ is called the *diffusion tensor*. It gives a *symmetric, positive definite* 2×2 *matrix* D(x,y,t) for all (x,y,t). It may be different for every (x,y,t), and may depend on u.

Intuitively

Diffusion tries to *locally* cancel out any existing color differences, the image *u* gradually becomes *more and more smooth* over time.

Diffusion: Computation of the Update

Diffusion

$$(\partial_t u)(x,y,t) = (\operatorname{div}(D\nabla u))(x,y,t)$$

- 1. Start with image $u: \Omega \times [0, T] \to \mathbb{R}$, values $u(x, y, t) \in \mathbb{R}$
- 2. Compute the gradient

$$\mathbf{g}(\mathbf{x}, \mathbf{y}, \mathbf{t}) := (\nabla u)(\mathbf{x}, \mathbf{y}, \mathbf{t}) = \begin{pmatrix} (\partial_{\mathbf{x}} u)(\mathbf{x}, \mathbf{y}, \mathbf{t}) \\ (\partial_{\mathbf{y}} u)(\mathbf{x}, \mathbf{y}, \mathbf{t}) \end{pmatrix} \in \mathbb{R}^{2}$$

3. Multiply the diffusion tensor $D(x, y, t) \in \mathbb{R}^{2 \times 2}$ with the gradient $g(x, y, t) \in \mathbb{R}^2$:

$$v(x, y, t) := D(x, y, t)g(x, y, t) \in \mathbb{R}^2$$

4. Take divergence of *v*:

$$d(x, y, t) := (\text{div } v)(x, y, t) = (\partial_x v_1)(x, y, t) + (\partial_y v_2)(x, y, t) \in \mathbb{R}$$

Diffusion: Types

Diffusion

$$\partial_t u = \operatorname{div}(D\nabla u)$$

Linear/Nonlinear

▶ Linear: *D does not* depend on *u*

▶ Nonlinear: *D* depends on *u*

Additivity property of linear diffusion:

Given the solutions u and v for starting images u^0 and v^0 , respectively, the solution for the starting image $u^0 + v^0$ is given by u + v.

Diffusion: Types

Diffusion

$$\partial_t u = \operatorname{div}(D\nabla u)$$

Isotropic/Anisotropic

▶ Isotropic: Diffusivity matrix *D* is a scaled identity matrix:

$$D(x,y,t)=g(x,y,t)\begin{pmatrix}1&0\\0&1\end{pmatrix}.$$

 $g(x, y, t) \in \mathbb{R}$ is called **diffusivity**. The diffusion equation becomes

$$\partial_t u = \mathsf{div}(g \nabla u)$$

Anisotropic: Any diffusion which is not isotropic.

Isotropic diffusion spreads out the values u equally in every direction.

Anisotropic diffusion can selectively suppress information flow in certain directions, e.g. only smooth out *u along* potential edges, and *not across*.

Diffusion: Types

Each diffusion is either linear or nonlinear, and either isotropic or anisotropic:

	isotropic	anisotropic
linear	linear isotropic	linear anisotropic
nonlinear	nonlinear isotropic	nonlinear anisotropic

Example: Laplace Diffusion

Diffusion tensor is constant:

$$D(x,y,t) := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Diffusion equation becomes

$$\partial_t u = \operatorname{div}(D\nabla u) = \Delta u$$

This is a *linear* and *isotropic* diffusion.

Effect: Blurry version of the input image

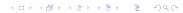
For $\Omega=\mathbb{R}^2$ one can show the explicit formula

$$u(x, y, t) = (G_{\sqrt{2t}} * u^{0})(x, y).$$

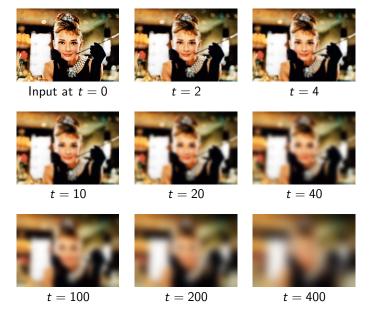
This formula is **not** valid for rectangular domains Ω , only for $\Omega = \mathbb{R}^2$, but the Laplace diffusion results are still similar to Gaussian convolution.

Multi-channel images

Process channel-wise.



Example: Laplace Diffusion



Example: Huber Diffusion

Diffusion tensor depends on the image u (or, more precicely, on ∇u):

$$D(x, y, t) = g(x, y, t) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

with
$$g(x,y,t) := \widehat{g}\Big(|\nabla u(x,y,t)|\Big)$$
 and $\widehat{g}(s) := \frac{1}{\max(\varepsilon,s)}$.

Diffusion equation becomes

$$\partial_t u = \operatorname{div}(D\nabla u) = \operatorname{div}\left(\widehat{g}(|\nabla u|)\nabla u\right)$$

This is a *nonlinear* and *isotropic* diffusion.

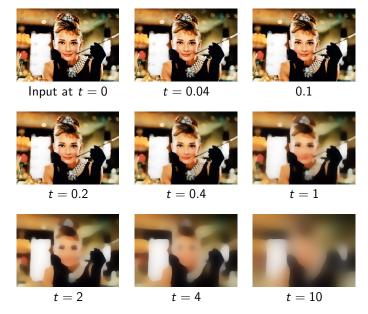
Effect: Smoothing with better edge preservation:

Edges of u are points (x, y) with large gradient value $|\nabla u(x, y)|$. The diffusivity g is small in these points, so there will be less smoothing.

Multi-channel images

Channel-wise, but with one common diffusivity $\widehat{g}(|\nabla u|)$ for all channels.

Example: Huber Diffusion with $\varepsilon = 0.01$



Example: Linear Anisotropic Diffusion

Diffusion tensor depends on the structure tensor T of the input image f.

$$D(x,y,t) = \begin{pmatrix} G_{11}(x,y) & G_{12}(x,y) \\ G_{21}(x,y) & G_{22}(x,y) \end{pmatrix}$$

where $G(x,y) = \mu_1 e_1 e_1^T + \mu_2 e_2 e_2^T \in \mathbb{R}^{2\times 2}$ is constructed from the eigenvalues and eigenvectors of the structure tensor $T(x,y)^{-1}$. In particular

$$\mu_1 = \alpha, \ \mu_2 = \alpha + (1 - \alpha) \exp\left(-\frac{C}{(\lambda_1 - \lambda_2)^2}\right).$$

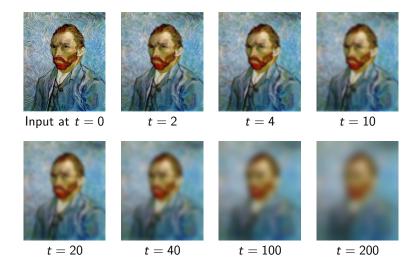
Diffusion equation becomes

$$\partial_t u = \operatorname{div}(G \nabla u).$$

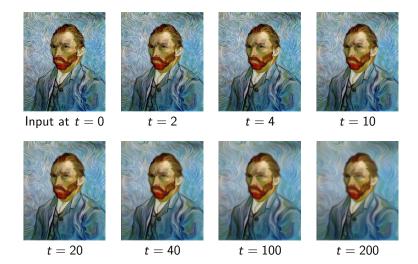
This is a linear and anisotropic diffusion.

Effect: Smoothing along the direction of the image structures. If $(\lambda_1 - \lambda_2)^2$ is big, μ_2 is chosen big \Rightarrow more smoothing along e_2 .

Example: Linear Isotropic Diffusion



Example: Linear Anisotropic Diffusion



Discretization: General Isotropic Diffusion

Temporal derivative

Forward differences for ∂_t with a time step $\tau > 0$:

$$(\partial_t^+ u)(x,y,t) = \frac{u(x,y,t+\tau) - u(x,y,t)}{\tau}$$

Spatial derivatives

Forward differences for ∇ , backward differences for div:

$$\operatorname{\mathsf{div}}^-\!\left(\operatorname{\mathsf{g}} \nabla^+ u\right) = \partial_{\operatorname{\mathsf{x}}}^-\!\left(\operatorname{\mathsf{g}} \partial_{\operatorname{\mathsf{x}}}^+ u\right) + \partial_{\operatorname{\mathsf{y}}}^-\!\left(\operatorname{\mathsf{g}} \partial_{\operatorname{\mathsf{y}}}^+ u\right)$$

Diffusivity

Forward differences:

$$g = \widehat{g}(|\nabla^+ u|)$$

The current image u(t) is used to compute g.

Discretization: General Isotropic Diffusion

Final scheme for general isotropic diffusion

$$u(x, y, t + \tau) = u(x, y, t) + \tau \operatorname{div}^{-}(g \nabla^{+} u)$$
 with $g = \widehat{g}(|\nabla^{+} u|)$

Computation in several steps

- 1. Compute the gradient $G := \nabla^+ u$
- 2. Compute the diffusivity $g = \widehat{g}(|G|)$
- 3. Compute the product $P := g \cdot G$
- 4. Compute the divergence $div^-(P)$
- 5. Multiply by τ and add to u

Time step restriction

Only small τ possible. For monotonically decreasing \hat{g} : $\tau < 0.25/\hat{g}(0)$.

Discretization: Laplace Diffusion

Two ways to discretize the special case of Laplace diffusion, i.e. g = 1.

Final scheme for Laplace diffusion: Multi-step

One way is to use the above general multi-step procedure.

Final scheme for Laplace diffusion: Direct

Another way is to compute the update $\operatorname{div}^-(\nabla^+ u) = \Delta u$ directly in a single step, using the discretization from the previous lecture:

$$u(x,y,t+\tau)=u(x,y,t)+\tau(\Delta u)(x,y,t)$$

with

$$\begin{split} (\Delta u)(x,y,t) &= & \mathbf{1}_{x+1 < W} \cdot u(x+1,y,t) + \mathbf{1}_{x>0} \cdot u(x-1,y,t) \\ &+ & \mathbf{1}_{y+1 < H} \cdot u(x,y+1,t) + \mathbf{1}_{y>0} \cdot u(x,y-1,t) \\ &- & \left((\mathbf{1}_{x+1 < W}) + (\mathbf{1}_{y+1 < H}) + (\mathbf{1}_{x>0}) + (\mathbf{1}_{y>0}) \right) \cdot u(x,y,t). \end{split}$$

Time step restriction

Only small τ possible: $\tau < 0.25$.

