
GPU Programming in Computer Vision

Summer Semester 2015

Thomas Möllenhoff, Robert Maier, Caner Hazirbas

Variational Methods

Energy minimization
An established approach to model numerous computer vision problems.

Energy
Every possible candidate solution u is assigned an energy E (u).
Idea: E (u) measures the costs of u: The smaller the costs the better the
solution.

Minimizers
Candidates u with least energy are considered solutions to the problem.

Advantages:

I Clear mathematical correspondence between input data and result

I Extensive mathematical theory, optimality conditions

I Can describe sophisticated problems with only a few parameters

I Lots of algorithms to compute the minimizers

Variational Methods

Typical form

E (u) = D(u) + R(u)

I Data term D(u) measures how well the solution u fits input data.

I Regularizer R(u) enforces regularity and smoothness of u.

Minimizing E will give a solution u which fits to the inputs and is smooth!

Example: 3D reconstruction

Input: views of an object from different cameras. Find: the 3D-object.

Example: Depth reconstruction

Input: a pair of stereo images. Find: the depth in every pixel

Example: Image Deblurring

Input: a blurry image. Find: a deblurred image.

Example: Segmentation

Input: a color image. Find: object with certain given characteristics
(colors distribution etc.).

Example: Multilabel Segmentation

Input: a color image. Find: a meaningful decomposition into several
regions.

Image Denoising: The Problem

Input: a noisy image f : Ω→ Rn. Find: denoised u : Ω→ Rn.

Image Denoising: Energy

Data term

I The clean image u must be similar to the noisy image f :

D(u) :=

∫
Ω

(
u(x , y)− f (x , y)

)2
dx dy

I Minimize D(u) to guarantee that u ≈ f .

Regularizer

I Solution u must be noise-free, so we look for smooth images u.

I Colors in neighboring pixels must be similar, i.e. |∇u| must be small:

R(u) := λ

∫
Ω

φ
(
|(∇u)(x , y)|

)
dx dy .

I φ : R→ R is an increasing function, λ > 0 is a weighting parameter.

I Minimize R(u) to guarantee that |∇u| is small, and u noise-free.

Image Denoising: Energy

Denoising energy

E (u) =

∫
Ω

((
u(x , y)− f (x , y)

)2︸ ︷︷ ︸
D(u)

+ λφ
(
|(∇u)(x , y)|

)
︸ ︷︷ ︸

R(u)

)
dx dy

If u = f :
Perfect fit for data: D(u) = 0. But u noisy: R(u)� 1.

If u = const:
Bad fit for data: D(u)� 1. But u smooth: R(u) = 0.

True solution
Will be a trade-off between data fitting and smoothness.
λ controls the desired degree of smoothness of u.

Energy Minimization: Methods

Denoising Energy

E (u) =

∫
Ω

((
u(x , y)− f (x , y)

)2
+ λφ

(
|(∇u)(x , y)|

))
dx dy

How to find the minimizer u in practice?

There are many methods. The most common ones are:

1. Gradient descent: Go along the negative “gradient” of the energy.

2. Euler-Lagrange equation: Necessary condition for the minimizers.

3. Primal-dual methods: Very flexible iterative algorithms.

Gradient Descent: Gradient of the Energy
Intuitively: (∇E)(u) is the gradient w.r.t. values u(x , y) at each (x , y).

Analogy with finite e : Rk → R:

I For z ∈ Rk : (∇e)(z) has (dimRk)-many components.

I If the position z is changed slightly to z + h,
then (∇e)(z) describes the rate of the change of e:

e(z + h) ≈ e(x) +
k∑

i=1

(
(∇e)(z)

)
i
· hi

Therefore:

I For u : Ω→ R: (∇E)(u) has (dim
{
û : Ω→ R

}
)-many components,

i.e. one for every pixel. So (∇E)(u) is a function (∇E)(u) : Ω→ R.

I If the image u is changed slightly in each pixel to u(x , y) + h(x , y),
then (∇E)(u) describes the rate of the change of E :

E (u + h) ≈ E (u) +

∫
Ω

(
(∇E)(u)

)
(x , y) · h(x , y) dx dy

Gradient Descent: Update Equation

Idea

I The gradient is the direction of steepest increase of E .

I The negative gradient is the direction is steepest descent.

Gradient descent equation

∂tu = −(∇E)(u)

So, having computed some candidate u with energy E (u), we can
construct a better candidate unew with a potentially lower energy E (unew):

(unew)(x , y) = u(x , y) + τ
(
− (∇E (u))(x , y)

)

Gradient Descent: Image Denoising
Denoising energy

E (u) =

∫
Ω

((
u(x , y)− f (x , y)

)2
+ λφ

(
|(∇u)(x , y)|

))
dx dy

Functional derivative

(∇E)(u) = 2(u − f)− λ div

(
φ′
(
|∇u|

)
|∇u|

∇u
)

Gradient descent equation

∂tu = −(∇E)(u) = 2(f − u) + λ div

(
φ′
(
|∇u|

)
|∇u|

∇u
)

Observe:

I The structure of the equation is the same as for diffusion with

diffusivity g := λ φ
′(|∇u|)
|∇u| , but with an additional term 2(f − u).

Gradient Descent: Quadratic Regularizer Example

Quadratic regularizer: Set φ(s) := 1
2 s

2.

Denoising energy

E (u) =

∫
Ω

((
u(x , y)− f (x , y)

)2
+ λ

2 |(∇u)(x , y)|2
)
dx dy

Using this regularizer leads to oversmoothing, solutions are too blurry.

Gradient descent equation

We have φ′(s)
s = 1, therefore

∂tu = 2(f − u) + λ∆ u

Gradient Descent: Huber Regularizer Example

Huber regularizer: Set φ(s) := hε(s) :=

{
s2

2ε if s < ε

s − ε
2 else

}
.

Denoising energy

E (u) =

∫
Ω

((
u(x , y)− f (x , y)

)2
+ λhε

(
|(∇u)(x , y)|

))
dx dy

This regularizer only smooths in flat regions, edges are well preserved.

Gradient descent equation

We have φ′(s)
s = 1

max(ε,s) , therefore

∂tu = 2(f − u) + λ div

(
1

max(ε,|∇u|)∇u
)

Euler-Lagrange Equation

Idea
Setting the gradient to zero, i.e. considering (∇E)(u) = 0, yields a
necessary optimality condition for the minimizers u.

Euler-Lagrange equation

2(u − f)− λ div

(
φ′
(
|∇u|

)
|∇u|

∇u
)

= 0

For convex energies:
Any image u fulfilling the equation is a minimizer of the energy.

Solving:

I discretize

I apply fixed-point iteration

Euler-Lagrange Equation: Discretization

Forward differences for the diffusivity g := ĝ
(
|∇+u|

)
, ĝ(s) := φ′(s)

s .
Forward differences for ∇, backward differences for div:

2(u − f)− λ div−
(
g ∇+u

)
= 0.

Fully written out, this is

2(u − f)− λ
(

gr u(x + 1, y) + gl u(x − 1, y)

+ gu u(x , y + 1) + gd u(x , y − 1)

− (gr + gl + gu + gd) u(x , y)

)
= 0

with

gr := 1x+1<W · g(x , y), gl := 1x>0 · g(x − 1, y),

gu := 1y+1<H · g(x , y), gd := 1y>0 · g(x , y − 1).

This is a nonlinear equations system. Use a fixed point iteration scheme.

Euler-Lagrange Equation: Fixed-Point Iteration

1. Start with an image u0.

2. Compute the diffusivity g = ĝ
(
|∇+uk |

)
at the current iterate uk .

Compute gr , gl , gu, gd in each pixel (see previous slide).

3. Solve the following linear system for uk+1: for all (x , y) ∈ Ω,(
2 + λ(gr + gl + gu + gd)

)
uk+1(x , y)

− λ gr uk+1(x + 1, y)− λ gl uk+1(x − 1, y)

− λ gu uk+1(x , y + 1)− λ gd uk+1(x , y − 1) = 2f (x , y).

4. Iterate until convergence.

Linear Equation Systems: Jacobi Method
Jacobi Method
To solve Az = b: split A = D + R with diagonal D and off-diagonal R:

D =


a11 0 · · · 0

0 a22

...
...

. . . 0
0 . . . 0 ann

, R =


0 a12 · · · a1n

a21 0
...

...
. . . an−1,n

an1 . . . an,n−1 0


(D + R)z = b, so z = D−1(b − Rz). One iteration leads to the update:

zk+1
i =

1

aii

(
bi −

∑
j 6=i

aijz
k
j

)

Update for the Euler-Lagrange equation

uk+1(x , y) = 2f (x,y) +λ gru
k (x+1,y) +λ glu

k (x−1,y) +λ guu
k (x,y+1) +λ gdu

k (x,y−1)
2 +λ (gr+gl+gu+gd)

Linear Equation Systems: Gauss-Seidel Method

Gauss-Seidel Method
Split A = L∗ + U, with L∗ lower triangular and U upper triangular:

L∗ =


a11 0 · · · 0

a21 a22

...
...

. . . 0
an1 . . . an,n−1 ann

, U =


0 a12 · · · a1n

0 0
...

...
. . . an−1,n

0 . . . 0 0


(L∗ + U)z = b, so z = L−1

∗ (b − Ux). One iteration leads to the update:

zk+1
i =

1

aii

(
bi −

∑
j>i

aijz
k
j −

∑
j<i

aijz
k+1
j

)
This is exactly the Jacobi update, but with new values zk+1 if available.

Red-black scheme
To parallelize the Gauss-Seidel update: First: update only at pixels (x , y)
with (x + y)%2 = 0. Then: only with (x + y)%2 = 1.

Linear Equation Systems: Gauss-Seidel Method with SOR

Successive Over-Relaxation (SOR)
Accelerates the Gauss-Seidel method by linear extrapolation.

SOR update step
Let z̄k+1 be the result of one Gauss-Seidel iteration applied to zk .
Compute

zk+1 = z̄k+1 + θ(z̄k+1 − zk)

where θ ∈ [0, 1) is a fixed parameter.

Convergence
SOR converges for any θ ∈ [0, 1). The optimal θ depends on A.
In practice, one uses values near 1, typically 0.5–0.9, or 0.9–0.98.

