Analysis of
 Three-Dimensional Shapes (IN2238, TU München, Summer 2015)

Dr. Emanuele Rodolà

rodola@in.tum.de

Room 02.09.058, Informatik IX
13.04.2015

Computer Vision Group

5 Post-docs
14 PhD students

Prof. Dr. Daniel Cremers
Master and bachelor students welcome!

Formalities

- Who?

Dr. Emanuele Rodolà

- Where? Room 02.09.023, Informatik IX
- When? Mondays and Tuesdays 10:00-12:00 lecture Wednesdays 14:00-16:00 exercises

Other formalities

- Mathematical problems
- Programming exercises (Matlab, C++)
- Final exam (written or oral or both - probably oral)
- Office hours: send me an e-mail to set up a meeting
- Textbooks and scientific papers will be suggested throughout the lecture

Announcement

- No lecture on April $14^{\text {th }}$ (Tuesday)
- The first exercise sheet is online.

Topics

Correspondence

Symmetry

Partial similarity

Representation

Topics

Analysis of shape collections

Segmentation

Feature detection

Description

Tools

Linear algebra

Metric spaces

Differential geometry

Tools

PDEs

Optimization

Tools

PDEs

Optimization

Good news:
90% of the time we will be able to have a visualization of what we are doing!

Seminar

Recent Advances in the Analysis of 3D Shapes (IN2107)

When? Thursdays, 14:00 Where? 02.09.023

First meeting: Apr 16, 14:00

Topic: Region detection and segmentation of shapes

What is a shape?

"There can be no such thing as a mathematical theory of shape. The very notion of shape belongs to the natural sciences."
J. Koenderink. Solid Shape. MIT Press 1990.

What is a shape?

- Proteins
- Molecules
- 2D Images
- 3D models (coming from a 3D scanner)
- 3D models (coming from CAD software)
- Volumetric models (medical imaging)
- More complicated structures (things you can't even visualize)

Shapes vs images: domain

Euclidean (flat)

Non-Euclidean (curved)

Shapes vs images: representation

Array of pixels (uniform grid)

Splines

Point cloud

Shapes vs images: parametrization

Global

Local

Shapes vs images: sampling

$$
\left[\begin{array}{lllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Uniform

"Uniform" is not well-defined

Shapes vs images: transformations

General (non-rigid) deformations

Shapes vs images: calculus

Shape similarity

Is there something like a "space of shapes"?

Shape matching

- Given a pair of shapes, let's try to find a correspondence between them.

Shape matching

- Find the best alignment/map/correspondence.

Shape matching

In the real world

In the real world

Taxonomy

Local vs. Global refinement (e.g. ICP)
alignment (search)

Rigid vs. Deformable rotation, translation general deformation

Pair vs. Collection two shapes multiple shapes

Pairwise rigid correspondence

Iterative Closest Point
For a given pair of shapes M and N, iterate:

1. For each $x_{i} \in M$ find its nearest neighbor $y_{i} \in N$
2. Find the deformation R, t minimizing:

$$
\sum_{x_{i} \in M}\left\|R x_{i}+t-y_{i}\right\|
$$

Pairwise rigid correspondence

Taxonomy

Local vs. Global refinement (e.g. ICP)
alignment (search)

Rigid vs. Deformable rotation, translation general deformation

Pair vs. Collection two shapes multiple shapes

Taxonomy

vs. Global
alignment (search)
vs. Deformable general deformation

Pair vs. Collection

multiple shapes

Pairwise rigid correspondence

Iterative Closest Point

1. Find the deformation R, t minimizing:

$$
\sum_{x_{i} \in M}\left\|R x_{i}+t-y_{i}\right\|
$$

Deformable shape matching

- Unlike rigid matching (rotation/translation), there is no compact representation to optimize for.

Deformable shape matching

- Instead, directly optimize over all possible point-to-point correspondences.

Signature preservation

$$
T_{o p t}=\underset{T: M \rightarrow N}{\arg \min } \sum_{x_{i} \in M}\left\|S\left(x_{i}\right)-S\left(T\left(x_{i}\right)\right)\right\|
$$

What signature?

One possibility: Look for similar textures

What signature?

Another possibility: Let's look at the geometry!

$$
\left(\Delta_{X}+\frac{\partial}{\partial t}\right) u=0
$$

Heat equation governs the diffusion of heat on manifold X over time

Heat diffusion on manifolds

Heat Kernel Signature

Robust to pose variations

Signature preservation

$$
T_{o p t}=\underset{T: M \rightarrow N}{\arg \min } \sum_{x_{i} \in M}\left\|S\left(x_{i}\right)-S\left(T\left(x_{i}\right)\right)\right\|
$$

Metric preservation

$$
T_{\text {opt }}=\underset{T: M \rightarrow N}{\arg \min } \sum_{\left(x_{i}, x_{j}\right) \in M \times M}\left\|d_{M}\left(x_{i}, x_{j}\right)-d_{N}\left(T\left(x_{i}\right), T\left(x_{j}\right)\right)\right\|
$$

Metric preservation

Metric preservation

Metric preservation

$$
T_{\text {opt }}=\underset{T: M \rightarrow N}{\arg \min } \sum_{\left(x_{i}, x_{j}\right) \in M \times M}\left\|d_{M}\left(x_{i}, x_{j}\right)-d_{N}\left(T\left(x_{i}\right), T\left(x_{j}\right)\right)\right\|
$$

Metric preservation

$$
T_{\text {opt }}=\underset{T: M \rightarrow N}{\arg \min } \sum_{\left(x_{i}, x_{j}\right) \in M \times M}\left\|d_{M}\left(x_{i}, x_{j}\right)-d_{N}\left(T\left(x_{i}\right), T\left(x_{j}\right)\right)\right\|
$$

Metric preservation

$$
T_{o p t}=\underset{T: M \rightarrow N}{\arg \min } \sum_{\left(x_{i}, x_{j}\right) \in M \times M}\left\|d_{M}\left(x_{i}, x_{j}\right)-d_{N}\left(T\left(x_{i}\right), T\left(x_{j}\right)\right)\right\|
$$

Metric preservation

$$
T_{o p t}=\underset{T: M \rightarrow N}{\arg \min } \sum_{\left(x_{i}, x_{j}\right) \in M \times M}\left\|d_{M}\left(x_{i}, x_{j}\right)-d_{N}\left(T\left(x_{i}\right), T\left(x_{j}\right)\right)\right\|
$$

Metric preservation

$$
T_{o p t}=\underset{T: M \rightarrow N}{\arg \min } \sum_{\left(x_{i}, x_{j}\right) \in M \times M}\left\|d_{M}\left(x_{i}, x_{j}\right)-d_{N}\left(T\left(x_{i}\right), T\left(x_{j}\right)\right)\right\|
$$

Metric preservation

$$
T_{\text {opt }}=\underset{T: M \rightarrow N}{\arg \min } \sum_{\left(x_{i}, x_{j}\right) \in M \times M}\left\|d_{M}\left(x_{i}, x_{j}\right)-d_{N}\left(T\left(x_{i}\right), T\left(x_{j}\right)\right)\right\|
$$

Examples of metrics

Euclidean

Geodesic

Diffusion

Invariance to what?

Invariance to what?

Invariance to what?

Invariance to what?

Invariance to what?

Shapes belong to other classes!

Inter-class matching, or...

Inter-class matching, or...

Matching a shark to a tornado

Inter-class matching, or...

Matching a shark to a tornado

Geometric accurate

Semantic makes sense

Aesthetic beautiful

Gromov-Hausdorff distance

$$
T_{\text {opt }}=\underset{T: M \rightarrow N}{\arg \min } \sum_{\left(x_{i}, x_{j}\right) \in M \times M}\left\|d_{M}\left(x_{i}, x_{j}\right)-d_{N}\left(T\left(x_{i}\right), T\left(x_{j}\right)\right)\right\|
$$

Gromov-Hausdorff distance

- Minimizing the worst-case distortion of the metric caused by the correspondence T is given by:

$$
\begin{aligned}
D_{\text {GH }} & (M, N)= \\
& =\min _{T: M \rightarrow N} \max _{\left(x_{i}, x_{j}\right) \in M \times M}\left\|d_{M}\left(x_{i}, x_{j}\right)-d_{N}\left(T\left(x_{i}\right), T\left(x_{j}\right)\right)\right\|
\end{aligned}
$$

This is a true distance among shapes ();

Gromov-Hausdorff distance

Gromov-Hausdorff distance

Gromov-Hausdorff distance

Space of shapes

Is there something like a "space of shapes"?

Space of shapes

Is there something like a "space of shapes"? Yes!

Space of shapes

Space of shapes

Space of shapes

Space of shapes

Triangle inequality: $\quad D_{G H}(X, Y)+D_{G H}(Y, Z) \geq D_{G^{H}}(X, Z)$

Beyond two shapes

- Let us consider an entire collection of shapes

Beyond two shapes

Difficult to match!

Beyond two shapes

Difficult to match!
Can we use additional information to produce better correspondences?

Beyond two shapes

Easier to match!

Beyond two shapes

Beyond two shapes

Beyond two shapes

Beyond two shapes

A correspondence can now be induced by transitivity or "triangle consistency"

Beyond two shapes

A correspondence can now be induced by transitivity or "triangle consistency"

Suggested readings

- Numerical geometry of non-rigid shapes. Chapter 1 Introduction.

