Analysis of Three-Dimensional Shapes (IN2238, TU München, Summer 2015)

> Dr. Emanuele Rodolà rodola@in.tum.de Room 02.09.058, Informatik IX

> > 13.04.2015

Computer Vision Group

Prof. Dr. Daniel Cremers

5 Post-docs 14 PhD students Master and bachelor students welcome!

Formalities

• Who?

Dr. Emanuele Rodolà

TA

Thomas Windheuser

Matthias Vestner

- Where? Room 02.09.023, Informatik IX
- When? Mondays and Tuesdays 10:00-12:00 *lecture* Wednesdays 14:00-16:00 *exercises*

Other formalities

- Mathematical problems
- **Programming exercises** (Matlab, C++)
- Final exam (written or oral or both probably oral)
- Office hours: send me an e-mail to set up a meeting
- **Textbooks** and **scientific papers** will be suggested throughout the lecture

Announcement

- No lecture on April 14th (Tuesday)
- The first exercise sheet is online.

Topics

Correspondence

Partial similarity

Representation

Topics

Analysis of shape collections

Feature detection

Segmentation

Description

Tools

Linear algebra

Metric spaces

Conformal geometry

Differential geometry

Tools

Optimization

Tools

Good news:

90% of the time we will be able to have a visualization of what we are doing!

Seminar

Recent Advances in the Analysis of 3D Shapes (IN2107)

When? Thursdays, 14:00 Where? 02.09.023

First meeting: Apr 16, 14:00

<u>Topic</u>: Region detection and segmentation of shapes

What is a shape?

"There can be no such thing as a mathematical theory of shape. The very notion of shape belongs to the natural sciences."

J. Koenderink. Solid Shape. MIT Press 1990.

What is a shape?

- Proteins
- Molecules
- 2D Images
- 3D models (coming from a 3D scanner)
- **3D models** (coming from CAD software)
- Volumetric models (medical imaging)
- More complicated structures (things you can't even visualize)

Shapes vs images: domain

Euclidean (flat)

Non-Euclidean (curved)

Shapes vs images: representation

Point cloud

Triangular mesh

Shapes vs images: parametrization

Global

Local

Shapes vs images: sampling

Uniform

"Uniform" is not well-defined

Shapes vs images: transformations

<u>—</u>

Shape similarity

Is there something like a "space of shapes"?

Shape matching

• Given a pair of shapes, let's try to find a **correspondence** between them.

Shape matching

• Find the **best** alignment/map/correspondence.

Shape matching

In the real world

In the real world

Taxonomy

Localvs.Globalrefinement (e.g. ICP)alignment (search)

Rigidvs.**Deformable**rotation, translationgeneral deformation

Pairvs.Collectiontwo shapesmultiple shapes

Pairwise rigid correspondence

Iterative Closest Point

For a given pair of shapes *M* and *N*, **iterate**:

- 1. For each $x_i \in M$ find its nearest neighbor $y_i \in N$
- 2. Find the deformation *R*, *t* minimizing:

$$\sum_{x_i \in M} \left\| Rx_i + t - y_i \right\|$$

Pairwise rigid correspondence

Taxonomy

Localvs.Globalrefinement (e.g. ICP)alignment (search)

Rigidvs.**Deformable**rotation, translationgeneral deformation

Pairvs.Collectiontwo shapesmultiple shapes

Taxonomy

vs. **Global** alignment (search)

vs. **Deformable** general deformation

vs. **Collection** multiple shapes

Pairwise rigid correspondence

Iterative Closest Point

1. Find the deformation *R*, *t* minimizing:

$$\sum_{x_i \in M} \left\| Rx_i + t - y_i \right\|$$

Deformable shape matching

 Unlike rigid matching (rotation/translation), there is no compact representation to optimize for.
Deformable shape matching

Instead, directly optimize over all possible point-to-point correspondences.

Signature preservation

$$T_{opt} = \underset{T:M \to N}{\operatorname{arg min}} \sum_{x_i \in M} \left\| S(x_i) - S(T(x_i)) \right\|$$

What signature?

One possibility: Look for similar textures

What signature?

Another possibility: Let's look at the geometry!

$$\left(\Delta_X + \frac{\partial}{\partial t}\right)u = 0$$

Heat equation governs the diffusion of heat on manifold *X* over time

Heat diffusion on manifolds

Heat Kernel Signature

Robust to pose variations

Signature preservation

$$T_{opt} = \underset{T:M \to N}{\operatorname{arg min}} \sum_{x_i \in M} \left\| S(x_i) - S(T(x_i)) \right\|$$

$$T_{opt} = \arg \min_{T:M \to N} \sum_{(x_i, x_j) \in M \times M} \left\| d_M(x_i, x_j) - d_N(T(x_i), T(x_j)) \right\|$$

$$T_{opt} = \arg \min_{T:M \to N} \sum_{(x_i, x_j) \in M \times M} \left\| d_M(x_i, x_j) - d_N(T(x_i), T(x_j)) \right\|$$

$$T_{opt} = \arg \min_{T:M \to N} \sum_{(x_i, x_j) \in M \times M} \left\| d_M(x_i, x_j) - d_N(T(x_i), T(x_j)) \right\|$$

$$T_{opt} = \arg \min_{T:M \to N} \sum_{(x_i, x_j) \in M \times M} \left\| d_M(x_i, x_j) - d_N(T(x_i), T(x_j)) \right\|$$

$$T_{opt} = \arg \min_{T:M \to N} \sum_{(x_i, x_j) \in M \times M} \left\| d_M(x_i, x_j) - d_N(T(x_i), T(x_j)) \right\|$$

$$T_{opt} = \arg \min_{T:M \to N} \sum_{(x_i, x_j) \in M \times M} \left\| d_M(x_i, x_j) - d_N(T(x_i), T(x_j)) \right\|$$

$$T_{opt} = \arg \min_{T:M \to N} \sum_{(x_i, x_j) \in M \times M} \left\| d_M(x_i, x_j) - d_N(T(x_i), T(x_j)) \right\|$$

Examples of metrics

Invariance to what? Shapes belong to other classes!

Inter-class matching, or...

Inter-class matching, or...

Matching a shark to a tornado

Inter-class matching, or...

Matching a shark to a tornado

Geometric accurate Semantic *makes sense* Aesthetic beautiful

$$T_{opt} = \arg \min_{T:M \to N} \sum_{(x_i, x_j) \in M \times M} \left\| d_M(x_i, x_j) - d_N(T(x_i), T(x_j)) \right\|$$

• Minimizing the <u>worst-case</u> distortion of the metric caused by the correspondence *T* is given by:

$$D_{GH}(M, N) = = \min_{T:M \to N} \max_{(x_i, x_j) \in M \times M} \left\| d_M(x_i, x_j) - d_N(T(x_i), T(x_j)) \right\|$$

This is a *true* distance among shapes 🙂

Is there something like a "space of shapes"?

Is there something like a "space of shapes"? Yes!

Space of shapes

Triangle inequality: $D_{GH}(X, Y) + D_{GH}(Y, Z) \ge D_{GH}(X, Z)$

• Let us consider an entire **collection** of shapes

Difficult to match!

Difficult to match!

Can we use additional information to produce better correspondences?

Easier to match!

A correspondence can now be induced by transitivity or "triangle consistency"

A correspondence can now be induced by transitivity or "triangle consistency"

Suggested readings

 Numerical geometry of non-rigid shapes. Chapter 1 – Introduction.