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The matching game
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Let                       be the computed correspondence, 
and                        be the ground-truth mapping 
among the two shapes (which we have).
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The matching game
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Let A and B be the number of matched points in X and Y respectively, and let 
N be the total number of points.

We compute the score of C as:
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Overview

Differential geometry is the study of local properties of curves and surfaces, 
i.e. those properties which depend only on the behavior of the curve or 
surface in the neighborhood of a point.

Some of these local properties act globally, in the sense that they also have 
an influence on the behavior of the entire curve or surface (e.g. 
characterizing geodesic paths on a surface).

Common notions in Computer Vision and 
Graphics such as curvature, normal 
vectors, geodesic distance, area 
elements and so on are part of differential 
geometry. 



Overview
Differential geometry provides us with powerful tools to directly compute, 
among other things:
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Overview
...which in turn enables us to do some more interesting and fancy stuff, like:

Texture segmentation Fourier analysis

Solving differential equations Shape matching



This is your world



A union of charts
Each of these charts can 
be seen as a mapping

We already know that we cannot 
require x to be an isometry (see 
the cartographer’s example from 
yesterday).

But we can require x to be smooth 
and invertible, in particular x
should be a diffeomorphism (see 
slides about Lipschitz distance).



Regular surfaces
Intuitively: A regular surface in         is obtained by taking pieces of a plane, 
deforming them, and arranging them so that the resulting shape has no sharp 
points, edges, or self-intersections.

This way, it makes sense to speak of tangent planes, and the figure is smooth
enough so that the usual notions of calculus can be extended to it.

3R



Manifolds

From the point of view of classical differential geometry, a regular surface is a 
2-dimensional Riemannian sub-manifold.

subset ofit has a metric
structure (we will 
see this next week)

it is a union of 
2D charts

With this in mind, from now on whenever we refer to 2D manifolds we will 
mean «regular surface».

Most papers on shape analysis use these terms interchangeably.



Manifolds without boundary

For the rest of the lecture we will consider regular surfaces without boundary.

Note that this is but one particular choice. For example, we could instead 
model our shapes as 3-dimensional manifolds with boundary 
(interior+surface).



Parametrized curves

A parametrized differentiable curve is a differentiable map                    
of an open interval I = (a,b) of the real line into        .

3: RI
3R

))(),(),(()( tztytxt  • t is called parameter
• x(t), y(t), z(t) are differentiable

The tangent vector (or velocity vector) of the curve at t is defined as:
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Parametrized curves

)),sin(),cos(()( bttatat  ),()( 23 ttt 

Both curves are differentiable, the 
second curve has                          , 
thus only the first curve is regular.

)0,0()0(' 

singular point



Parametrized surfaces

Here                is open, and                               is regular if                            has 
full rank.

A parametrized surface element or chart is a regular homeomorphism

This means that the parametrization is differentiable:

where functions x, y, z have continuous partial derivatives of all orders in U.

The full rank condition means that there exists a tangent plane at all points 
of S (we will come back to this later).



Parametrized surfaces

A parametrized surface (regular surface) is the union of parametrized surface 
elements (charts):



Non-regular surfaces

Self-intersection: since we require
to be a 

homeomorphism, it must be one-
to-one. However, this is not the 
case at point p in the figure.

Cusps and edges: these are singular 
points in the same sense as we had 
with the regular curves. In the 
figure above, we cannot really speak 
about a tangent plane at p.



Some examples

2-dimensional manifold 
without boundary

not a manifold (not 
differentiable at the 
kink)

2-dimensional manifold 
with boundary (the 
boundary itself is a 1-
dimensional manifold)



Non-manifolds

self-intersecting geometry
(tangent plane is not 
unique)

topological noise lower-dimensional structures



Discrete meshes

As a matter of fact, in practice 
none of our meshes are manifolds!

Meshes are defined as collections of 
polygons (usually triangles), hence 
we always have irregularities
between adjacent faces and at the 
vertices.

However, we will still be able to define meaningful quantities which 
approximate well (in some sense) their continuous counterparts.

Discretizing the notions of differential geometry to work with meshes is the 
main task of discrete differential geometry.



Example of regular surface

Let us show that the unit sphere

}1;),,{( 22232  zyxzyxS R

is a regular surface.

Consider the parametrization                                     given by
32

1 : RRx U

 )(1,,),( 22

1 yxyxyx x

where                                                   .}1;,{ 222  yxyxU R

is the open part of        above the xy plane.
2S)(1 Ux



Example of regular surface
Since                       , the function                             has continuous partial 
derivatives of all orders and thus       is differentiable.

122  yx )(1 22 yx 

1x

Similarly, consider the parametrization

 )(1,,),( 22

2 yxyxyx x

Observe that                               covers        minus the equator:)()( 21 UU xx  2S



Example of regular surface
We can proceed and define the additional parametrizations:

 zzxxzx ,)(1,),( 22

3 x

 zzxxzx ,)(1,),( 22

4 x

 zyzyzy ,,)(1),( 22

5 x

 zyzyzy ,,)(1),( 22

6 x

These, together with        and        , cover        completely and show that it is 
indeed a regular surface.

1x 2x 2S



Example of regular surface
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Examples



Change of parameters

As also seen from the previous example (the world maps), in general a 
surface point can belong to many surface elements / charts.

In fact, in general we could choose other coordinate systems and 
parametrizations, for example via stereographic projection or geographical 
coordinates.

The local properties of the surface should not depend on the 
specific choice of a system of coordinates!



Change of parameters
The following proposition will be useful when we will have to prove 
invariance to parametrization:

Let p be a point of a regular surface S, and let                                 and   
be two parametrizations of S such that                                       .

Then the change of coordinates                                                             is a 
diffeomorphism (that is, h is differentiable and has a differentiable inverse).

SU  2: Rx

SV  2: Ry WVUp  )()( yx
)()(: 111 WWh   xyyx 

Simply put, if p belongs to two neighborhoods x(U) and y(V), it is possible to 
pass from one coordinate system to the other by means of a differentiable 
transformation.



Change of parameters

yx 1h



Differentiable function on a surface

Thus, a function f is differentiable at p if its expression in the coordinate 
neighborhood spanned by (u,v) admits continuous partial derivatives of all 
orders.

Let                               be a function defined in an open subset V of a regular 
surface S. Then f is said to be differentiable at p if, for some parametrization                

with                    , the composition                                       is 
differentiable at               .

R SVf :

SU  2: Rx VU )(x RRx  2:Uf 
)(1 p

x

We will now define the notion of a differentiable function on a regular surface.



Differentiable function on a surface

Note that this definition does not depend on the choice of the parametrization. 
In fact, if                                 is another parametrization with                   , and if

, then                                 is also differentiable.
SU  2: Ry )(Vp x

yx 1h hff  xy 

Example:

The height function h relative 
to a unit vector              :3

Rv
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Example:

The distance function
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Differentiable mappings
We have previously seen the notion of homeomorphic functions among shapes 
(for example, isometries). Similarly, we can extend the definition of 
differentiability to mappings between surfaces.

A continuous map                                  is said to be differentiable at p if, given 
parametrizations

211: SSV 

2

2

221

2

11 :,: SUSU  RxRx

with                       and                                        , the map)(1 Up x )())(( 2211 UU xx 

211

1

2 : UU  xx 

is differentiable at )(1

1 pq  x



Differentiable mappings



Diffeomorphisms

We say that two shapes are diffeomorphic if there exists a differentiable 
map between them, with a differentiable inverse. Such a map is called a 
diffeomorphism between the two surfaces.

The notion of diffeomorphism plays the same role in the study of regular 
surfaces that the notion of isometry plays in the study of metric spaces.

From the point of view of differentiability, two diffeomorphic surfaces are 
indistinguishable.

Also note that every regular surface is locally diffeomorphic to a plane.



Tangent plane

The set of tangent vectors to the parametrized curves of S, passing through 
p, constitutes the tangent plane at p. We will denote it by             .)(STp



Tangent plane

Let us try to be more rigorous. First, note that given a tangent vector                
and a point                          , we can always find a differentiable curve                        

with                      and                     .

3
Rw

3

0 RSp
S ),(:  0)0( p w)0('

(simply write                           )twpt  0)(



Differential of a map
Now let                                    be a differentiable map, and let
be a differentiable curve on the parameter domain. Consider the differentiable 
curve                                               . Then the differential of x at p is defined as:

32: RRx U U ),(: 

3),(: Rx   

)0(')(d wpx

x )( px

)(d wpx

 x

))(),(()( tvtut 

))(),(())(()( tvtutt xx  



Differential of a map

• The differential is defined as                             , and is mapping tangent 
vectors to tangent vectors.

32:d RRx p

• The differential is a property of x, and as such it does not depend on the 
choice of the curve     .

• The differential is a linear map.

Now let                                    be a differentiable map, and let
be a differentiable curve on the parameter domain. Consider the differentiable 
curve                                               . Then the differential of x at p is defined as:

32: RRx U U ),(: 

3),(: Rx   

)0(')(d wpx

The latter two facts are made more evident in the next slide.



Differential of a map

Let (u,v) be coordinates in  U and (x,y,z) be coordinates in       . Then for 
the differentiable map                                  , we have defined the differential 
as                               , where                                                      . 
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“Jacobian matrix” of x at p

Notice that, indeed, the 
Jacobian matrix does 
not depend on the 
specific curve     that we 
introduced to define 
the differential.


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In order to differentiate       with respect to t, we apply the chain rule and 
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Differential of a map

These are just the 
two red curves in 
U, which get 
mapped to S via x.

The differential is 
mapping the 
tangent vectors            
to tangent vectors 
on S.



Tangent plane

We can now give a more rigorous definition for the tangent plane             .
Let                                be a parametrization of a regular surface S and let           
The vector subspace of dimension 2,                           , coincides with the set 
of tangent vectors to S at          .
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Wrap-up
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Discretization
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Piecewise-linear model
Given a triangle mesh, we will assume that scalar functions defined over it 
behave piecewise-linearly w.r.t. the triangulation. Note that this is a 
common assumption, but by no means the only possible model.



Mesh parametrization (triangles)
Let us consider a triangle mesh composed of m triangles. Our triangle-based 
parametrization is then described by the charts                           for 

with                                          .



Mesh parametrization (1-rings)
Another possibility is to parametrize w.r.t. patches centered at 
each vertex. However, we will concentrate on the triangle-based 
parametrization throughout this course. 



Suggested reading
 Differential geometry of curves and surfaces. Do 

Carmo – Chapters 2.1-2.4, Appendix 2.B

 Differential Geometry: Curves – Surfaces – Manifolds. 
W. Kühnel – Chapter 3A


