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Wrap-up
Last time we have introduced the main notions of differential geometry
that we will be using in this course.

In particular, we showed how to model a 3D shape as a regular surface, that 
is, just a collection of deformed plane patches (called surface elements) glued 
together so as to form something smooth.



• Each surface element is the image of a known diffeomorphism, 
namely a parametrization function (or chart)

• Talking about the surface then corresponds to talking about x.

Wrap-up
The general idea of this approach is that we wish to analyze shapes according 
to a simple recipe:

• Consider each point of the shape as belonging to some surface element.
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Wrap-up
In doing so, the are some properties that we naturally expect to be satisfied:

• The local properties of the surface should not depend on the specific choice 
of a parametrization x.

• Since we want to speak about tangent planes, the parametrization should 
be differentiable.

• Since we know how to do calculus in       , we would like to transfer this 
knowledge to the study of non-Euclidean domains (the surface).
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Wrap-up
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Wrap-up
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with                                          .

Wrap-up
Let us consider a triangle mesh composed of m triangles. Our triangle-based 
parametrization is then described by the charts                           for 



Measuring lengths and areas
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We are going to introduce a tool for measuring metric properties of a surface, 
such as lengths, areas, and integrals of scalar functions.

Integral of a function
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First fundamental form

The quadratic form                              given byR)(: STI pp

2
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is called the first fundamental form of the regular surface S at p.

The first fundamental form is, intuitively, the expression of how the 
surface S “inherits” the natural inner product of .3
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p
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product on the tangent plane at p.



First fundamental form

Let us denote by                 the basis associated to a parametrization               
at p (thus,                spans the tangent plane             ).
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Any vector                      is the tangent vector to a curve
which lies on the surface, with                      and  
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First fundamental form
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E, F, and G are often called the “coefficients” or “components” of the first 
fundamental form. These coefficients play important roles in many 
intrinsic quantities of the surface.
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also called (Riemannian) metric tensor

By letting p run in the neighborhood defined by x(u,v) we obtain smooth 
functions E(u,v), F(u,v), G(u,v). A manifold together with this smooth inner 
product is called a Riemannian manifold.



First fundamental form
22 )'(''2)'()( vGvFuuEwI p 
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this is often called just g

We have seen that the differential 
map associated to x is represented 
by the Jacobian matrix: Then, it is easy to see that:



Parametrizations
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orthogonal parametrization
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generic parametrization
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The confusing example
Consider a plane                 passing through       and containing the 
orthonormal vectors        and
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We want to compute the first fundamental form for an arbitrary point q in S. 
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Example 2 (plane)
Consider the previous example, but this time let                 and
We are changing the parametrization x, but still we expect that the lengths 
of vectors in              do not change (as they are a property of the surface).
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Say, for example, that we take the same (p,w) from the previous example.
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previous example:

this example:

The two bases, and thus the coefficients 
for w are different in the two examples.
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Example 3 (plane)
Let’s make it more interesting and let                                   and
Again, we expect that the length of w does not change.
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Even though the coefficients in g are different, again we expect the first 
fundamental form to be the same as before.
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Example 4 (cylinder)

We notice that the plane and the cylinder behave locally in the same way, since their 
first fundamental forms are equal.

In other words, plane and cylinder are locally isometric. We will discuss about local 
isometries more in detail at a later time.
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Example 5a (sphere)

From this example it becomes evident that the coefficients 
E, F, G are indeed differentiable functions E(u,v), F(u,v), 
G(u,v).

Thus, if                               is the tangent vector to the sphere at point x(u,v), 
then its squared length is given by                                                       .



Example 5b (sphere)

The result is probably going to look not very nice. 

In general, from a computational point of view it is much more 
convenient to plug in the values for directly in                   , and 
only then compute g.



Length of a curve
By knowing the first fundamental form, we can treat metric questions on a 
regular surface without further references to the ambient space.
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Thus, if                                       is contained 
in a surface element parametrized by x(u,v), 
we can compute the length as:
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Remember that E, F, G are 
actually functions of (u,v), 
so in general they are 
changing along the curve.



Length of a curve
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Length of a curve
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22 )'(''2)'()(Thus, if                                       is contained 
in a surface element parametrized by x(u,v), 
we can compute the length as:
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Pitfall: Notice that we are talking about length of curves within surface 
elements, thus in general this construction cannot be used to compute 
distances among any two given surface points.

In fact, we wrote:
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Arc length element

Length

In terms of the metric tensor, the arc length element ds is given by:
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A more compact notation for the length of a 
curve can then be defined as:



Area of a region
The first fundamental form can be employed to compute the area of a 
bounded region R of a regular surface S. If                is contained in the image 
of the parametrization                                , the area of R is defined by
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Area of a region
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The area of a region on the surface is defined as the sum of 
the areas of parallelograms tangent to that surface region.
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Area of a region
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Area element
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Similarly to the arc length case, we can define the area element da as:
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And then we can use the following notation:

The area element is also called (Riemannian) volume form. In the case of 
2-dimensional manifolds (our case), volume corresponds to area.



Wrap-up
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We have obtained two alternative expressions for measuring lengths and areas: 
one is defined in parameter space, the other is defined directly on the surface.
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Surface



Integral of a function
We can follow a similar approach to compute the integral of a function 
defined over the surface, RSf :
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Analogously to the previous slide, we get to the definition:

Generalizes the substitution 
rule in classical multivariate 
calculus



with                                          .

Discretization: chart
Let us consider a triangle mesh composed of m triangles. Our triangle-based 
parametrization is then described by the charts                           for 



Discretization: metric tensor

We simply have:

The coefficients for the metric tensor / first fundamental form are thus given by:



Discretization: area element

Let us compute the area of the triangle by applying our definition of area of a 
region:



behaves linearly
within each triangle and it is 
uniquely determined by its 
values at the vertices of the 
triangle. 

Discretization: integral



The integral of f over a region is just the sum of the integrals over 
each triangle       .

behaves linearly
within each triangle and it is 
uniquely determined by its 
values at the vertices of the 
triangle. 

Discretization: integral



Suggested reading
 Differential geometry of curves and surfaces. Do 

Carmo – Chapters 2.5, Appendix 2.B

 Differential Geometry: Curves – Surfaces – Manifolds. 
W. Kühnel – Chapter 3A


