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Wrap-up

Last time we have introduced the main notions of differential geometry
that we will be using in this course.

In particular, we showed how to model a 3D shape as a regular surface, that
is, just a collection of deformed plane patches (called surface elements) glued
together so as to form something smooth.




Wrap-up

The general idea of this approach is that we wish to analyze shapes according
to a simple recipe:

Consider each point of the shape as belonging to some surface element.

Each surface element is the image of a known diffeomorphism,
namely a parametrization function (or chart) x : R? — R?
Talking about the surface then corresponds to talking about x.
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Wrap-up

In doing so, the are some properties that we naturally expect to be satisfied:

* The local properties of the surface should not depend on the specific choice
of a parametrization x.

» Since we want to speak about tangent planes, the parametrization should

be differentiable.

« Since we know how to do calculusin R", we would like to transfer this
knowledge to the study of non-Euclidean domains (the surface).
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Wrap-up

Let us consider a triangle mesh composed of m triangles. Our triangle-based
parametrization is then described by the charts x; : R - R? for j=1,...,m

Xj(u,v) = x;1 +u(zj2 — ;1) +v(z;3 — x5,1)

with v € [0,1],v € [0,1 — u] .
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Measuring lengths and areas

We are going to introduce a tool for measuring metric properties of a surface,
such as lengths, areas, and integrals of scalar functions.

Length of a curve Area of a region Integral of a function

oS-SR



/ T e e

First fundamental form

The quadratic form | , : T (S) — R given by
Lo (W) =(w,w), =W

is called the first fundamental form of the regular surface S at p.

We write <,> , to remind ourselves that we are computing the inner
product on the tangent plane at p.

The first fundamental form is, intuitively, the expression of how the
surface S “inherits” the natural inner product of R®.
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First fundamental form

Let us denote by {X,, X, } the basis associated to a parametrization X(U, V)
at p (thus,{X,, X, } spans the tangent plane Tp (S)).

Anyvector We T (S) is the tangent vector to a curve (t) = x(u(t), v(t))
which lies on the surface, with t € (—¢, &) and p = a(0).

Then we can write:
chain rule

1, (W) =1, (' (0))=(c'(0), ' (0)) = (X UX,V', X UHXV) -
= (Xgr Xy ), U +2(X,, X, ) UVHX,, X, ) (V)

=E@U")* +2Fu'v'+G(v')?
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First fundamental form

| (w) =E@U")* +2Fu'v'+G(v')*
E e

e

G=(X,,X,),

also called (Riemannian) metric tensor

E, F, and G are often called the “coefficients” or “components” of the first
fundamental form. These coefficients play important roles in many
intrinsic quantities of the surface.

By letting p run in the neighborhood defined by x(u,v) we obtain smooth
functions E(u,v), F(u,v), G(u,v). A manifold together with this smooth inner
product is called a Riemannian manifold.
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First fundamental form

| (w) =E@U")* +2Fu'v'+G(v')*

e O )
G =(X,,X,), P

this is often called just g

We have seen that the differential
map associated to x is represented

by the Jacobian matrix: Then, it is easy to see that:

g=Dx"Dx = (<Xu» Xu) <Xu,xv>)

DX <XU, Xu> <X’07 X'U>

Xu Xy
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Parametrizations

generic parametrization

A
TpS
Av
= A o
(o, p)
g p >e
L_/ g

conformal parametrization F' =0, F = G isometric parametrization ' = 0, £ = G =1
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The confusing example

Considera plane S — R® passing through g, and containing the
orthonormal vectors W, and W,.
X, =W,

u

X(U,v)=Qq, +uw, +wWw, = _  _

We want to compute the first fundamental form for an arbitrary point g in S.

. 1 4
950 1

Euclidean metric tensor

W=ax, + fX,

Thus, the first fundamental form of w at p is 1,((@. 8)) = @ 5 ((1) gj(%) =a’+p’



Example 2 (plane)

Consider the previous example, but this time let ||W1|| =1 and ||W2 || =2
We are changing the parametrization x, but still we expect that the lengths
of vectorsin T (S) do not change (as they are a property of the surface).

Say, for example, that we take the same (p,w) from the previous example.

0 4
W, R oot
I\ previous example: W = aX, + ﬂXV
this example: W=aoX, + ﬁ’XV

10
As before, we have X, =W, X, =W,,and then g = ( J :

The two bases, and thus the coefficients
for w are different in the two examples.

[ o,
[axu+,BXV=&>~<u+ﬁ>~<v]

LoYey f 2yr oyel
We can now compute |,((,8)) =(« ﬂ){ j( J{a —]( j[£]=a2+ﬂ2
0 4)p 2 o 4]



Example 3 (plane)

Let’s make it more interesting and let ||W1|| =1, ||W2|| =1, and <W1, W2> — i
Again, we expect that the length of w does not change. V2

1 1/&)

Once again, we have X, =W,, X, =W, , and now g =
g W \4 u 1 Y 2 g [1/\/5 1

Even though the coefficients in g are different, again we expect the first
fundamental form to be the same as before.

| ‘ W 0‘W1+,6W2:0NT/1+/8W2
77777777 (a,ﬁ)y» 2/W = u
T e -
: _dxf+ q Wl_ 11 XVZ_\/E( 1+W2)
' : a=a-p. B=2p

% 1 U2)e) (- = e
Sowe get 1,((a,8)=(a ﬂ{l/ﬁ - )( j—(a B \/EﬂL/ J(ﬁ~j—a T
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Example 4 (cylinder)

B

-
.

x(u,v) =(cosu,sinu,V)
U={(u,v)eR*; 0<u<2r, —0o<V<o}

X, = (=sinu,cosu,0), x, =(0,0,1)

{10
=

in“u+cosu=1

I
n

E
F
G

I
ey

We notice that the plane and the cylinder behave locally in the same way, since their
first fundamental forms are equal.

In other words, plane and cylinder are locally isometric. We will discuss about local
isometries more in detail at a later time.
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Example 5a (sphere)

- cos(u) cos(v)
SoAI e (—5, 5) — R3 Xluvr= Sin(’({b) E:o)s(fu)
—sin(u) cos(v) — cos(u)sin(v) =
Dx=|x, x,| =/ cos(u)cos(v) —sin(u)sin(v) =
0 cos(v)

0 1 E, F, G are indeed differentiable functions E(u,v), F(u,v),

7 e
cos“(v) O i i i
g PxlDs ( ( ) ) From this example it becomes evident that the coefficients
G(u,v).

Thus, if w = ax,, + Bx, isthe tangent vector to the sphere at point x(u,v),
then its squared length is given by |w|* = I(w) = a® cos?*(v) + 2.
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Example 5b (sphere)
1 2U
y : R? 5 RS y(a,@):a2+62+1 2%

a2 + 9% —1

5 ¢ — a4+ 1 240
Dy (@, ) = 200 u’ — 0% +1
R 2 5
(G2 4+ 92 + 1) 97 2% 2
g = DyTDy The result is probably going to look not very nice.

In general, from a computational point of view it is much more
convenient to plug in the values for @, ¥ directly in Dy (w,v), and
only then compute g.



Length of a curve

By knowing the first fundamental form, we can treat metric questions on a
regular surface without further references to the ambient space.

arc-length of a curve ¢ (O,T) —> S S(t) = jlla' (X)I'dX = j\/| (a'(X))dX

odt;)

Remember that E, F, G are
actually functions of (u,v),
so in general they are

changing along the curve.

Thus, if a(t) =X(u(t),v(t)) is contained . . = .
in a surface element parametrized by x(u,v), s(t) = j \/E (u )2 +2Fu'v'+G(v )2 dt
0

we can compute the length as:



Length of a curve

t
length s(t) = j\/E(u')2 +2FU'V+G (V)2 dt
0
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Length of a curve

Pitfall: Notice that we are talking about length of curves within surface
elements, thus in general this construction cannot be used to compute
distances among any two given surface points.

In fact, we wrote:

t
Thus, if a(t) =X(u(t),v(t)) is contained s(t) = j- \/E (u ')2 +2Fu'v'+G (V')2 dt
in a surface element parametrized by x(u,v), 0

we can compute the length as:

v
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Arc length element

: : ds :
= G-l s 4
ds = o' (t)||dt

A more compact notation for the length of a
curve can then be defined as:

length («) = Lds

In terms of the metric tensor, the arc length element ds is given by:

ds = +/ Edu? + 2Fdudv + Gdv2dt
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Area of a region

The first fundamental form can be employed to compute the area of a
bounded region R of a regular surface S. If R < S is contained in the image
of the parametrization X:U — R? — S the area of R is defined by

AR) =[] [x,xx,Jdudv,  Q=x"(R)
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Area of a region

AR) =[] [x,xx,[dudv,  Q=x"(R)

i

The area of a region on the surface is defined as the sum of
the areas of parallelograms tangent to that surface region.



Area of a region
AR) = [[ x, xx,Jdudv,  Q=x7(R) g=£E Fj

Observe that:
) 3%, = e sin? @ =[x, x,|* @—c0s® @) =[x, [ x.[* = (x,. %)’

We can rewrite:

b, xx =yl —(%,.%,)° =VEG —F?= Jdetg

And so we come to the more compact writing:

A(R) = j J'Q,/det gdudv
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Area element

Similarly to the arc length case, we can define the area element da as:

da = ,/det gdudv

And then we can use the following notation:
A(R) = dea

The area element is also called (Riemannian) volume form. In the case of
2-dimensional manifolds (our case), volume corresponds to area.
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Wrap-up

We have obtained two alternative expressions for measuring lengths and areas:
one is defined in parameter space, the other is defined directly on the surface.

T T
parameterspace length () = [ o' (®)]dt = [ v Edu® + 2Fdudv + Gdv® dit
0 0

Surface Iength (Q{) o jds dS = \/Edu 2 e 2FdUdV i GdV2 dt

Parameter space A(R) R .JQ HXU X XVHdUdV’ Q A X—l(R)

Surface A(R) = [da da = ,/det gdudyv

R
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Integral of a function

We can follow a similar approach to compute the integral of a function
defined over the surface, f :S —> R

Let us use our newly introduced notation:

jR f (x)dx

Analogously to the previous slide, we get to the definition:

jR f (x)dx = j jQ f(x(u,v)) Jdetgdudv, Q=x"(R)

Generalizes the substitution
flv)dv = / f(¢(u))|det(D¢)(u) d“ rule in classical multivariate

calculus

¢{D )



Discretization: chart

Let us consider a triangle mesh composed of m triangles. Our triangle-based
parametrization is then described by the charts x; : R - R? for j=1,...,m

Xj(u,v) = x;1 +u(zj2 — ;1) +v(z;3 — x5,1)

with v € [0,1],v € [0,1 — u] .

il
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Discretization: metric tensor

x;i(u,v) =zj1+u(rjo—x;1)+v(x;3—121)

Zj1 R We simply have:

3
(Y R2 )
: X €21 €31
e L Xy =Ly = dg) = €31
/ Zj,3 o i
0 i 012 Ve G Ui oo g |
' u Zj,2

The coefficients for the metric tensor / first fundamental form are thus given by:

...



Discretization: area element
Xiluul— 15 bulrso o) L ulwyg 1)

Ll R

3
v R2 )
1 e X?)l 0 lear]®  (ea1,e31)
) P \leaen) el
" u 5,2

Let us compute the area of the triangle by applying our definition of area of a
region:

1 pl-u e
1
f da :/ / v det gjdudv = 2A(Tj)/ / dudv = QA(Tj)§ = A(T})



Discretization: integral

x;i(u,v) =zj1+u(rjo—x;1)+v(x;3—121)

f : S — R behaves linearly
within each triangle and it is
uniquely determined by its
values at the vertices of the
triangle. v

1

ij f da = fol Ol—u f(X(U,U))\/det gjd’LLdU '
= fol 01—u fz;1)(1 —u—2v)+ f(x;2)u+ f(z;3)vy/det g;dudv
= (f(z5,1) + flz;2) + f(25,3))2A(T;) A
= 5(f(zj1) + f(z)2) + f(z3))A(T}) f




Discretization: integral

x;i(u,v) =zj1+u(rjo—x;1)+v(x;3—121)

f : S — R behaves linearly
within each triangle and it is
uniquely determined by its
values at the vertices of the
triangle.

The integral of foveraregion R C S is just the sum of the integrals over
each triangle 77 .
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Suggested reading

Differential geometry of curves and surfaces. Do
Carmo - Chapters 2.5, Appendix 2.B

Differential Geometry: Curves — Surfaces - Manifolds.
W. Kiihnel - Chapter 3A



