Analysis of Three-Dimensional Shapes (IN2238, TU München, Summer 2015) The First Fundamental Form $(04.05.2015)$

> Dr. Emanuele Rodolà rodola@in.tum.de Room 02.09.058, Informatik IX

Last time we have introduced the main notions of **differential geometry** that we will be using in this course.

In particular, we showed how to model a 3D shape as a **regular surface**, that is, just a collection of deformed plane patches (called *surface elements*) glued together so as to form something smooth.

The general idea of this approach is that we wish to analyze shapes according to a simple recipe:

- Consider each point of the shape as belonging to some **surface element**.
- Each surface element is the image of a known **diffeomorphism**, namely a **parametrization** function (or **chart**) $\mathbf{x} : \mathbb{R}^2 \to \mathbb{R}^3$
- Talking about the surface then corresponds to talking about **x**.

In doing so, the are some **properties** that we naturally expect to be satisfied:

- The local properties of the surface should not depend on the specific choice of a parametrization **x**.
- Since we want to speak about tangent planes, the parametrization should be *differentiable*.
- Since we know how to do calculus in \mathbb{R}^n , we would like to transfer this knowledge to the study of non-Euclidean domains (the surface).

Let us consider a triangle mesh composed of *m* triangles. Our triangle-based parametrization is then described by the charts $\mathbf{x}_i : \mathbb{R}^2 \to \mathbb{R}^3$ for $\widetilde{j} = 1, \ldots, m$

$$
\mathbf{x}_j(u,v) = x_{j,1} + u(x_{j,2} - x_{j,1}) + v(x_{j,3} - x_{j,1})
$$

with $u \in [0,1], v \in [0,1-u]$.

Measuring lengths and areas

We are going to introduce a tool for measuring **metric properties** of a surface, such as *lengths*, *areas*, and *integrals* of scalar functions.

Length of a curve **Area of a region**

Integral of a function $f : S \rightarrow \mathbf{R}$

The quadratic form $I_{_p}$: $T_{_p}(S)$ \rightarrow **R** given by

$$
I_p(w) = \langle w, w \rangle_p = ||w||^2
$$

is called the **first fundamental form** of the regular surface *S* at *p*.

We write $\braket{\cdot, \cdot}_p$ to remind ourselves that we are computing the inner product on the tangent plane at *p.*

The first fundamental form is, intuitively, the expression of how the surface S "inherits" the natural inner product of $\, {\bf R}^3. \,$ \mathbf{R}^3

Let us denote by $\{\mathbf{x}_u, \mathbf{x}_v\}$ the basis associated to a parametrization $\mathbf{x}(u, v)$ at p (thus, $\left\{ \mathbf{x}_{u},\mathbf{x}_{v}\right\}$ spans the tangent plane $T_{p}\left(S\right)$).

Any vector $w \in T_p(S)$ is the tangent vector to a curve $\alpha(t) = \mathbf{x}(u(t),v(t))$ Any vector $w \in T_p(S)$ is the tangent vector to a curve $\alpha(u)$
which lies on the surface, with $t \in (-\varepsilon, \varepsilon)$ and $p = \alpha(0)$.

Then we can write:

chain rule
\n
$$
I_p(w) = I_p(\alpha'(0)) = \langle \alpha'(0), \alpha'(0) \rangle_p = \langle \mathbf{x}_u u' + \mathbf{x}_v v', \mathbf{x}_u u' + \mathbf{x}_v v' \rangle_p
$$
\n
$$
= \langle \mathbf{x}_u, \mathbf{x}_u \rangle_p (u')^2 + 2 \langle \mathbf{x}_u, \mathbf{x}_v \rangle_p u' v' + \langle \mathbf{x}_v, \mathbf{x}_v \rangle_p (v')^2
$$
\n
$$
= E(u')^2 + 2Fu' v' + G(v')^2
$$

$$
I_p(w) = E(u')^2 + 2Fu'v' + G(v')^2
$$

\n
$$
E = \langle \mathbf{x}_u, \mathbf{x}_u \rangle_p
$$

\n
$$
F = \langle \mathbf{x}_u, \mathbf{x}_v \rangle_p
$$

\n
$$
G = \langle \mathbf{x}_v, \mathbf{x}_v \rangle_p
$$

\n
$$
I_p(w) = (u' - v') \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} u' \\ v' \end{pmatrix}
$$

\n
$$
G = \langle \mathbf{x}_v, \mathbf{x}_v \rangle_p
$$

\nalso called (Riemannian) metric tensor

E, *F*, and *G* are often called the "coefficients" or "components" of the first fundamental form. These coefficients play important roles in many intrinsic quantities of the surface.

By letting *p* run in the neighborhood defined by **x**(*u*,*v*) we obtain smooth functions $E(u,v)$, $F(u,v)$, $G(u,v)$. A manifold together with this smooth inner product is called a **Riemannian manifold**.

$$
I_p(w) = E(u')^2 + 2Fu'v' + G(v')^2
$$

\n
$$
E = \langle \mathbf{x}_u, \mathbf{x}_u \rangle_p
$$

\n
$$
F = \langle \mathbf{x}_u, \mathbf{x}_v \rangle_p
$$

\n
$$
G = \langle \mathbf{x}_v, \mathbf{x}_v \rangle_p
$$

\n
$$
I_p(w) = (u' - v') \left(\frac{E}{F} - \frac{F}{G} \right) \left(\frac{u'}{v'} \right)
$$

this is often called just *g*

 $\bigg)$

'

u

v

 $\bigg)$

We have seen that the differential map associated to **x** is represented by the Jacobian matrix: Then, it is easy to see that:

$$
\mathbf{D}\mathbf{x} = \begin{pmatrix} \vdots & \vdots \\ \mathbf{x}_u & \mathbf{x}_v \\ \vdots & \vdots \end{pmatrix}
$$

$$
g = \mathrm{D} \mathbf{x}^{\mathrm{T}} \mathrm{D} \mathbf{x} = \begin{pmatrix} \langle \mathbf{x}_u, \mathbf{x}_u \rangle & \langle \mathbf{x}_u, \mathbf{x}_v \rangle \\ \langle \mathbf{x}_v, \mathbf{x}_u \rangle & \langle \mathbf{x}_v, \mathbf{x}_v \rangle \end{pmatrix}
$$

Parametrizations

$$
I_p(w) = (u' \quad v') \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} u' \\ v' \end{pmatrix} \qquad E = \langle \mathbf{x}_u, \mathbf{x}_u \rangle_p \quad F = \langle \mathbf{x}_u, \mathbf{x}_v \rangle_p \quad G = \langle \mathbf{x}_v, \mathbf{x}_v \rangle_p
$$

generic parametrization

conformal parametrization $F \equiv 0$, $E = G$

orthogonal parametrization $F \equiv 0$

isometric parametrization $F\equiv 0$, $E=G=1$

The confusing example

Consider a plane $S \subset \mathbf{R}^3$ passing through q_0 and containing the *orthonormal* vectors \widetilde{W}_1 and \widetilde{w}_1 and $\widetilde{w}_2.$

$$
\widetilde{\mathbf{x}}(u,v) = q_0 + u\widetilde{w}_1 + v\widetilde{w}_2 \qquad \Longrightarrow \qquad \widetilde{\mathbf{x}}_u = \widetilde{w}_1 \n\widetilde{\mathbf{x}}_v = \widetilde{w}_2
$$

We want to compute the first fundamental form for an arbitrary point *q* in *S*.

Thus, the first fundamental form of *w* at *p* is $I_p((\tilde{\alpha}, \tilde{\beta})) = (\tilde{\alpha} - \tilde{\beta}) \left| \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right| \left| \frac{\alpha}{\tilde{\beta}} \right| = \tilde{\alpha}^2 + \tilde{\beta}^2$ ~ 0 1 $(\widetilde{\beta})) = (\widetilde{\alpha} \quad \widetilde{\beta})^{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $((\tilde{\alpha}, \beta)) = |\tilde{\alpha} \quad \beta| \quad |\tilde{\alpha}| = \tilde{\alpha}^2 + \beta$ β $(\widetilde{\alpha}, \widetilde{\beta})) = (\widetilde{\alpha} \quad \widetilde{\beta}) \left| \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right| \left| \begin{array}{c} \widetilde{\alpha} \\ \widetilde{\beta} \end{array} \right| = \widetilde{\alpha}^2 +$ $\bigg)$ λ I \setminus $\bigg($ $\bigg)$ λ **CONTRACTOR** \setminus ſ ${I}_{p}((\widetilde{\alpha},\beta))=$

Example 2 (plane)

Consider the previous example, but this time let $\|w_1\|=1$ and $\|w_2\|=2.$ We are changing the parametrization **x**, but still we expect that the lengths of vectors in $\ T_{_{P}}(S)$ do *not* change (as they are a property of the <u>surface</u>). Say, for example, that we take the same (*p*,*w*) from the previous example.

As before, we have $\mathbf{x}_{u} = w_{1}$, $\mathbf{x}_{v} = w_{2}$, and then $|g = \begin{pmatrix} 0 & 1 \end{pmatrix}$. I I \setminus $\bigg($ \equiv $\begin{bmatrix} 0 & 4 \end{bmatrix}$ 1 0 *g*

 $\bigg)$ previous example: $~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ \widetilde{\mathcal{C}}\mathbf{\widetilde{X}}_u+\widetilde{\beta}\mathbf{\widetilde{X}}_v$ $w = \alpha \mathbf{x}_{u} + \beta \mathbf{x}_{v}$ this example:

 $\bigg)$

The two bases, and thus the coefficients for *w* are different in the two examples.

$$
\alpha \mathbf{x}_{u} + \beta \mathbf{x}_{v} = \widetilde{\alpha} \widetilde{\mathbf{x}}_{u} + \widetilde{\beta} \widetilde{\mathbf{x}}_{v}
$$

We can now compute $I_p((\alpha,\beta)) = (\alpha-\beta)\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = \begin{vmatrix} \alpha & \beta \\ \alpha & \alpha \end{vmatrix} = \begin{vmatrix} \alpha & \beta \\ 0 & 1 \end{vmatrix} = \begin{vmatrix} \alpha & \beta \\ 0 & 1 \end{vmatrix} = \alpha^2 + \beta^2$ 2 $\widetilde{}$ ≈ 0 4 1 0 2 $\begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \tilde{\alpha} & \tilde{\beta} \\ \tilde{\alpha} & \frac{\tilde{\beta}}{2} \end{pmatrix}$ 1 0 $((\alpha, \beta)) = (\alpha \beta)$ $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \tilde{\alpha} & \tilde{\beta} \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} \alpha \\ \tilde{\beta} \\ 2 \end{pmatrix}$ $(\alpha, \beta) = (\alpha \beta)^{-1} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ 0 & \overline{\beta} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \tilde{\alpha}^2 + \tilde{\alpha}^3$ l I $\big)$ λ ŀ Į \setminus $\bigg($ $\big)$ \mathcal{L} \mathbf{r} \setminus $\bigg($ ישוב היה המונה המונה
המונה המונה ה $\bigg)$ λ I I \setminus $\bigg($ **I** $\bigg)$ λ l.
K \setminus $\bigg($ $\big)$ λ \setminus $\bigg($ $I_p((\alpha,\beta)) =$

Example 3 (plane)

Let's make it more interesting and let $\|w_1\|=1, \;\; \|w_2\|=1,$ and Again, we expect that the length of *w* does *not* change. w_1 $\| = 1,$ $\| w_2$ $\| = 1,$ = 1, and $\langle w_1, w_2 \rangle = \frac{1}{\sqrt{2}}$. 2 1 $\langle w_1^{},w_2^{}\rangle =$

Once again, we have $\mathbf{x}_u = w_1$, $\mathbf{x}_v = w_2$, and now $g = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$. $\bigg)$ $\big)$ I I \setminus $\bigg($ $=$ $\begin{bmatrix} 1/\sqrt{2} & 1 \end{bmatrix}$ 1 $1/\sqrt{2}$ *g*

Even though the coefficients in *g* are different, again we expect the first fundamental form to be the same as before.

Example 4 (cylinder)

$$
\mathbf{x}(u, v) = (\cos u, \sin u, v)
$$

\n
$$
U = \{(u, v) \in \mathbb{R}^{2}; 0 < u < 2\pi, -\infty < v < \infty\}
$$

\n
$$
\mathbf{x}_{u} = (-\sin u, \cos u, 0), \mathbf{x}_{v} = (0, 0, 1)
$$

\n
$$
E = \sin^{2} u + \cos^{2} u = 1
$$

\n
$$
F = 0 \qquad \implies g = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
$$

\n
$$
G = 1
$$

 $\overline{}$ $\overline{}$

We notice that the plane and the cylinder behave locally in the same way, since their first fundamental forms are equal.

In other words, plane and cylinder are *locally isometric*. We will discuss about local

Example 5a (sphere)

$$
\mathbf{x} : (0, 2\pi) \times (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}^3 \qquad \mathbf{x}(u, v) = \begin{pmatrix} \cos(u)\cos(v) \\ \sin(u)\cos(v) \\ \sin(v) \end{pmatrix}
$$

$$
\mathbf{D}\mathbf{x} = \begin{pmatrix} \vdots & \vdots \\ \mathbf{x}_u & \mathbf{x}_v \end{pmatrix} = \begin{pmatrix} -\sin(u)\cos(v) & -\cos(u)\sin(v) \\ \cos(u)\cos(v) & -\sin(u)\sin(v) \end{pmatrix}
$$

$$
\mathbf{D}\mathbf{x} = \begin{pmatrix} \vdots & \vdots \\ \mathbf{x}_u & \mathbf{x}_v \\ \vdots & \vdots \end{pmatrix} = \begin{pmatrix} -\sin(u)\cos(v) & -\cos(u)\sin(v) \\ \cos(u)\cos(v) & -\sin(u)\sin(v) \\ 0 & \cos(v) \end{pmatrix}
$$

 $g = \mathbf{D}\mathbf{x}^{\mathrm{T}}\mathbf{D}\mathbf{x} = \begin{pmatrix} \cos^2(v) & 0 \\ 0 & 1 \end{pmatrix}$

From this example it becomes evident that the coefficients *E*, *F*, *G* are indeed differentiable functions *E*(*u*,*v*), *F*(*u*,*v*), *G*(*u*,*v*).

Thus, if $w = \alpha \mathbf{x}_u + \beta \mathbf{x}_v$ is the tangent vector to the sphere at point $\mathbf{x}(u,v)$, then its squared length is given by $|w|^2 = I(w) = \alpha^2 \cos^2(v) + \beta^2$.

Example 5b (sphere)

$$
\mathbf{y}: \mathbb{R}^2 \to \mathbb{R}^3 \qquad \qquad \mathbf{y}(\tilde{u}, \tilde{v}) = \frac{1}{\tilde{u}^2 + \tilde{v}^2 + 1} \begin{pmatrix} 2\tilde{u} \\ 2\tilde{v} \\ \tilde{u}^2 + \tilde{v}^2 - 1 \end{pmatrix}
$$

$$
Dy(\tilde{u}, \tilde{v}) = \frac{2}{(\tilde{u}^2 + \tilde{v}^2 + 1)^2} \begin{pmatrix} \tilde{v}^2 - \tilde{u}^2 + 1 & 2\tilde{u}\tilde{v} \\ 2\tilde{u}\tilde{v} & \tilde{u}^2 - \tilde{v}^2 + 1 \\ 2\tilde{u} & 2\tilde{v} \end{pmatrix}
$$

 $q = Dy^{T}Dy$

The result is probably going to look not very nice.

In general, from a computational point of view it is much more convenient to plug in the values for \tilde{u}, \tilde{v} directly in $Dy(\tilde{u}, \tilde{v})$, and only then compute *g*.

Length of a curve

By knowing the first fundamental form, we can treat metric questions on a regular surface without further references to the ambient space.

arc-length of a curve
$$
\alpha : (0, T) \rightarrow S
$$
 $s(t) = \int_{0}^{t} ||\alpha'(x)||dx = \int_{0}^{t} \sqrt{I(\alpha'(x))}dx$

Remember that *E*, *F*, *G* are actually functions of (*u*,*v*), so in general they are changing along the curve.

Thus, if $\alpha(t) = \mathbf{x}(u(t), v(t))$ is contained in a surface element parametrized by **x**(*u*,*v*), Thus, if $\alpha(t) = \mathbf{x}(u(t), v(t))$
in a surface element parametri
we can compute the length as:

$$
s(t) = \int_{0}^{t} \sqrt{E(u')^{2} + 2Fu'v' + G(v')^{2}} dt
$$

Length of a curve

Length of a curve

Pitfall: Notice that we are talking about length of curves **within** surface elements, thus in general this construction cannot be used to compute distances among *any two* given surface points.

In fact, we wrote:

Thus, if $\alpha(t) = \mathbf{x}(u(t), v(t))$ is contained in a surface element parametrized by **x**(*u*,*v*), we can compute the length as:

$$
s(t) = \int_{0}^{t} \sqrt{E(u')^{2} + 2Fu'v' + G(v')^{2}} dt
$$

Arc length element

Length
$$
s(t) = \int_{0}^{t} ||\alpha'(x)||dx
$$

The first fundamental theorem of calculus gives us:

$$
\frac{ds}{dt} = \left\| \alpha'(t) \right\|
$$

$$
ds = \left\| \alpha'(t) \right\| dt
$$

A more compact notation for the length of a curve can then be defined as:

$$
length(\alpha) = \int_{\alpha} ds
$$

In terms of the metric tensor, the **arc length element** *ds* is given by:

$$
ds = \sqrt{E du^2 + 2F du dv + G dv^2} dt
$$

Area of a region

The first fundamental form can be employed to compute the area of a bounded region R of a regular surface $S.$ If $\ R \subset S_-$ is contained in the image of the parametrization $\;\mathbf{x}\!:\!U\!\subset\!\mathbf{R}^z\,{\rightarrow}\,S$, the $\text{{\bf area}}$ of R is $\text{{\bf defined}}$ by $R \subset S$ $\mathbf{x}: U \subset \mathbf{R}^2 \to S$

$$
A(R) = \iint_{Q} \|\mathbf{x}_{u} \times \mathbf{x}_{v}\| dudv, \qquad Q = \mathbf{x}^{-1}(R)
$$

Area of a region

$$
A(R) = \iint_{Q} \|\mathbf{x}_{u} \times \mathbf{x}_{v}\| dudv, \qquad Q = \mathbf{x}^{-1}(R)
$$

The area of a region on the surface is defined as the sum of

Area of a region

$$
A(R) = \iint_{Q} \|\mathbf{x}_{u} \times \mathbf{x}_{v}\| dudv, \qquad Q = \mathbf{x}^{-1}(R) \qquad g = \begin{pmatrix} E & F \\ F & G \end{pmatrix}
$$

Observe that:

$$
\|\mathbf{x}_{u} \times \mathbf{x}_{v}\|^{2} = \|\mathbf{x}_{u}\|^{2} \|\mathbf{x}_{v}\|^{2} \sin^{2} \omega = \|\mathbf{x}_{u}\|^{2} \|\mathbf{x}_{v}\|^{2} (1 - \cos^{2} \omega) = \|\mathbf{x}_{u}\|^{2} \|\mathbf{x}_{v}\|^{2} - \langle \mathbf{x}_{u}, \mathbf{x}_{v} \rangle^{2}
$$

We can rewrite:

$$
\|\mathbf{x}_{u} \times \mathbf{x}_{v}\| = \sqrt{\|\mathbf{x}_{u}\|^{2} \|\mathbf{x}_{v}\|^{2} - \langle \mathbf{x}_{u}, \mathbf{x}_{v} \rangle^{2}} = \sqrt{EG - F^{2}} = \sqrt{\det g}
$$

And so we come to the more compact writing:

$$
A(R) = \iint_{Q} \sqrt{\det g} \, dudv
$$

Area element

Similarly to the arc length case, we can define the **area element** *da* as:

 $da = \sqrt{\det g} dudv$

And then we can use the following notation:

$$
A(R) = \int_R da
$$

The area element is also called **(Riemannian) volume form**. In the case of 2-dimensional manifolds (our case), volume corresponds to area.

We have obtained two alternative expressions for measuring lengths and areas: one is defined in **parameter space**, the other is defined directly on the **surface**.

$$
\text{Parameter space} \qquad \text{length}(\alpha) = \int_{0}^{T} \|\alpha'(t)\| dt = \int_{0}^{T} \sqrt{E du^{2} + 2F du dv + G dv^{2}} dt
$$
\n
$$
\text{Surface} \qquad \text{length}(\alpha) = \int_{\alpha} ds \qquad ds = \sqrt{E du^{2} + 2F du dv + G dv^{2}} dt
$$

Parameter space

$$
A(R) = \iint_{Q} \|\mathbf{x}_{u} \times \mathbf{x}_{v}\| dudv, \qquad Q = \mathbf{x}^{-1}(R)
$$

$$
A(R) = \int da \qquad da = \sqrt{\det g} dudv
$$

Surface
$$
A(R) = \int_R da
$$
 $da = \sqrt{\det g} dudv$

Integral of a function

We can follow a similar approach to compute the integral of a function defined over the surface, $f : S \to \mathbf{R}$

Let us use our newly introduced notation:

$$
\int_R f(x)dx
$$

Analogously to the previous slide, we get to the **definition**:

$$
\int_{R} f(x)dx = \iint_{Q} f(\mathbf{x}(u,v))\sqrt{\det g} du dv, \qquad Q = \mathbf{x}^{-1}(R)
$$

$$
\int_{\phi(U)} f(\mathbf{v}) d\mathbf{v} = \int_U f(\phi(\mathbf{u})) |\det(\mathbf{D}\phi)(\mathbf{u})| d\mathbf{u}.
$$

Generalizes the substitution rule in classical multivariate calculus

Discretization: chart

Let us consider a triangle mesh composed of *m* triangles. Our triangle-based parametrization is then described by the charts $\mathbf{x}_i : \mathbb{R}^2 \to \mathbb{R}^3$ for $\widetilde{j} = 1, \ldots, m$

$$
\mathbf{x}_j(u,v) = x_{j,1} + u(x_{j,2} - x_{j,1}) + v(x_{j,3} - x_{j,1})
$$

with $u \in [0,1], v \in [0,1-u]$.

Discretization: metric tensor

$$
\mathbf{x}_j(u,v) = x_{j,1} + u(x_{j,2} - x_{j,1}) + v(x_{j,3} - x_{j,1})
$$

We simply have:

$$
\mathbf{x}_{u} = x_{j,2} - x_{j,1} = e_{21}
$$

$$
\mathbf{x}_{v} = x_{j,3} - x_{j,1} = e_{31}
$$

The coefficients for the metric tensor / first fundamental form are thus given by:

$$
g_j = \begin{pmatrix} E_j & F_j \\ F_j & G_j \end{pmatrix} = \begin{pmatrix} \langle \mathbf{x}_u, \mathbf{x}_u \rangle & \langle \mathbf{x}_u, \mathbf{x}_v \rangle \\ \langle \mathbf{x}_v, \mathbf{x}_u \rangle & \langle \mathbf{x}_v, \mathbf{x}_v \rangle \end{pmatrix} = \begin{pmatrix} ||e_{21}||^2 & \langle e_{21}, e_{31} \rangle \\ \langle e_{21}, e_{31} \rangle & ||e_{31}||^2 \end{pmatrix}
$$

Discretization: area element

$$
\mathbf{x}_j(u,v) = x_{j,1} + u(x_{j,2} - x_{j,1}) + v(x_{j,3} - x_{j,1})
$$

$$
g_j = \begin{pmatrix} ||e_{21}||^2 & \langle e_{21}, e_{31} \rangle \\ \langle e_{21}, e_{31} \rangle & ||e_{31}||^2 \end{pmatrix}
$$

Let us compute the area of the triangle by applying our definition of area of a region:

$$
\int_{T_j} da = \int_0^1 \int_0^{1-u} \sqrt{\det g_j} du dv = 2A(T_j) \int_0^1 \int_0^{1-u} du dv = 2A(T_j) \frac{1}{2} = A(T_j)
$$

Discretization: integral

 $\mathbf{x}_j(u,v) = x_{j,1} + u(x_{j,2} - x_{j,1}) + v(x_{j,3} - x_{j,1})$

 $f : S \to \mathbb{R}$ behaves **linearly** within each triangle and it is uniquely determined by its values at the vertices of the triangle.

$$
\int_{T_j} f \, da = \int_0^1 \int_0^{1-u} f(\mathbf{x}(u, v)) \sqrt{\det g_j} du dv
$$
\n
$$
= \int_0^1 \int_0^{1-u} f(x_{j,1})(1-u-v) + f(x_{j,2})u + f(x_{j,3})v \sqrt{\det g_j} du dv
$$
\n
$$
= \frac{1}{6} (f(x_{j,1}) + f(x_{j,2}) + f(x_{j,3})) 2A(T_j)
$$
\n
$$
= \frac{1}{3} (f(x_{j,1}) + f(x_{j,2}) + f(x_{j,3})) A(T_j)
$$

Discretization: integral

 $\mathbf{x}_i(u, v) = x_{i,1} + u(x_{i,2} - x_{i,1}) + v(x_{i,3} - x_{i,1})$

 $f : S \to \mathbb{R}$ behaves **linearly** within each triangle and it is uniquely determined by its values at the vertices of the triangle.

The integral of f over a region $R \subseteq S$ is just the sum of the integrals over each triangle T_i .

$$
\int_R f \, da = \sum_{j=1}^{|R|} \int_{T_j} f \, da
$$

Suggested reading

- *Differential geometry of curves and surfaces*. Do Carmo – Chapters 2.5, Appendix 2.B
- *Differential Geometry: Curves – Surfaces – Manifolds*. W. Kühnel – Chapter 3A