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Wrap-up

We have studied the divergence theorem, and seen how to obtain an 
expression in local coordinates for the divergence in the case of a manifold.

In particular, we first rewrote the two inner products in local coordinates:

And then solved for the divergence, yielding the expression:
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Wrap-up
Replacing                 in the divergence theorem, we got the expression:

The operator                         is called the Laplace-Beltrami operator. 
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The expression in local coordinates for       can now be easily obtained as:

From which it is clear that the operator only depends on the metric g.



We discretized the Laplace-Beltrami operator using FEM. Given a finite 
element basis                      , we wrote the weak relation:

Wrap-up
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The two sides of the equation can be rewritten as                    , hence giving us:

Intuitively, the Laplacian acts in such a way that it 
provides, for each mesh point, the difference of the 
function computed at that point with the average 
of the function at its 1-ring neighborhood.



Wrap-up
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The stiffness and mass matrices are easy to compute for any given mesh:
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Laplacian-based geometry processing
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In this course we are mostly interested in the analysis of shapes rather than 
their processing. However, there is a large body of work dedicated to mesh 
processing, modeling and reconstruction based on the Laplacian.



From the above we see that the Laplacian is a self-adjoint operator, since 
we have                               .

Laplacian on a surface

Rewriting the divergence theorem in terms of      yields the Green’s 
identities:

9

Notice that the above relationships only hold for manifolds without 
boundary. Otherwise, additional integration terms on the boundary are also 
present!



Spectral theorem on a Hilbert space
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Let us consider a Hilbert space V and a Hermitian map A on V. That is:

Note that if A is a real matrix, this is equivalent to                .

It is easy to show (do it!) that all eigenvalues of A are real. Further, 
eigenvectors associated to distinct eigenvalues are orthogonal (and can of 
course be chosen to be orthonormal).

Now consider the eigenvalue problem:

Theorem: The eigenvectors of A form an orthonormal basis of V.



The eigen-decomposition of the Laplace-Beltrami operator gives rise to the so-
called Helmoltz equation:

Helmholtz equation

Since the Laplace operator is self-adjoint, its matrix representation is a 
Hermitian matrix. Then, we already know that its eigenvalues are real, and that 
the eigenfunctions f are orthogonal and form a basis.
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In particular, we are looking at the linear operator                                 , which 
maps scalar functions defined on the manifold S to scalar functions on S itself.

Thus, the eigenfunctions of      form a basis for the function space           .



Spectral theorem in our case
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The spectral theorem actually tells us that the eigenfunctions of      form an 
orthonormal basis for functions defined on the manifold.

Clearly, orthonormality here is understood with respect to the manifold inner 
product              .

In fact, let                        and                        , with                . Then Green’s 
formulas tell us:



Eigen-decomposition in practice

Note that, since                                  , we can rewrite the Helmholtz equation 
as an equivalent generalized eigenvalue problem:

The eigenvalues are the same as in the original case. In particular, since C is 
symmetric and M is symmetric positive-definite, the generalized eigenvectors 
f are still orthonormal with respect to the M-inner product:

In other words, we are approximating the continuous inner product as follows:
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Integral of eigenfunctions
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Consider Green’s identities again:

Then it is easy to see that the following equality holds for any function f:

In particular, let                      . Then we obtain:



Dirichlet energy and eigenvalues
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Let                      be an eigenfunction with corresponding eigenvalue      , and 
consider the Dirichlet energy of      :

This provides us with a nice characterization of the eigenvalues, in terms of 
the corresponding eigenfunctions.

In particular, from the above relation we see that if             , then  must be a 
constant function. Further,              is always an eigenvalue of      , since            
for any constant function f.



Rayleigh quotient and eigenvalues
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Consider again the Dirichlet energy of the eigenfunctions:

In matrix notation, we can write this energy term as             , and then consider 
the constrained minimization problem:

As we know from Rayleigh’s theorem, this is minimized by the eigenvector of 
L corresponding to the minimum, non-zero eigenvalue. That is, it is 
minimized by the first non-constant eigenfunction of     .



First non-constant eigenfunction
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Intuitively, supposing the weights         correspond to edge lengths, the problem 
above is seeking a one-dimensional embedding of the mesh on a line, that 
tries to respect the edge lengths of the mesh. With respect to classical MDS, we 
are just considering a different stress function.

Let us rewrite the objective function as a sum:

Recall when we were looking for Euclidean embeddings of a manifold:



First non-constant eigenfunction
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In our case (FEM), we have a weight which is 
proportional to the edge length:

In graph analysis, the 
first non-constant 
eigenvector of the 
Laplacian is also 
called the Fiedler 
vector.



Spectral theorem
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Since we are working with an orthonormal basis, the Fourier coefficients
can be recovered by the projections:

where       are eigenfunctions of 

constant Fiedler



Invariance under isometries

Since the Laplace-Beltrami operator only depends on g, it is invariant under 
isometric deformations of the surface.

20notice the sign flip here



Discrete spectrum

Note that we can not say much about the 
multiplicity of eigenvalues.
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It can be shown that the eigenvalues of the Laplacian defined on a compact 
surface without boundary are countable with no limit-point except ∞, so we 
can order them:

Another interesting relation is given by 
Weyl’s law:



Properties of the spectrum
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The spectrum of the Laplacian has several interesting properties for the 
purposes of shape analysis:

• It has a canonical ordering with respect to the Dirichlet energy of the 
eigenfunctions.

• It is an isometry invariant as it only depends on the metric.
• It allows to define scale-invariant properties of the shapes (more on this 

later).
• It depends continuously on the Riemannian metric of the manifold.
• It is easy and efficient to compute.
• Important information on the shape can be extracted from the 

spectrum alone (for example surface area, topological properties, 
symmetries, etc.)



Shape-DNA
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Unfortunately, the spectrum does not completely determine the shape of the 
underlying manifold, even though geometrical data is contained in the 
eigenvalues.

This means that, unfortunately, one cannot «hear the shape of the drum».

non-isometric, but 
isospectral domains

Nevertheless, examples like this are 
very difficult to construct and are 
understood to be relatively rare 
phenomena.

The Laplacian spectrum used as a 
global descriptor for a shape is 
known as the Shape DNA.



Shape-DNA
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Function approximation
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In general, in order to construct a scalar function using the linear combination 
given by                       , we should use all eigenfunctions. In the discrete case 
there are n of them, where n is the number of points in the mesh.

However, the spectrum ordering gives us a natural scale space. In particular, if 
we truncate the summation to the first k terms, we get an approximation:

this is understood in the 
L2 sense



Changes in scale

rescale
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What happens to the eigenvalues and eigenfunctions when we simply rescale 
a shape?

Weyl’s law is already suggesting us that something is going to change.



First eigenfunction (constant)
Observe that for       we have:

by orthonormality of 

In general, the scale of the eigenfunctions depends on the size of the shape.

This should come as no surprise, remember for instance Weyl’s law:
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Rescaling areas
Let us be given a shape S and its scaled version

u

v
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Let us be given a shape S and its scaled version                 , and let us consider 
the generalized eigenvalue problem for the first shape:

Rescaling eigenvalues

For the second shape, we have:

since cotangents 
do not change with 
scale

the areas in M
scale up with

One could pre-process the shapes by normalizing their eigenvalues. For 
instance, pick an eigenvalue       and rescale the given shape S as

for example, choose
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Rescaling eigenfunctions

What happens to the eigenfunctions?

Let us have a look at what happens to the first (constant) eigenfunction:

It looks like eigenfunctions are rescaled as                 . We are now going to 
prove this statement for arbitrary eigenfunctions.

30



Rescaling eigenfunctions

u

v
A few slides ago we showed that

Since this holds for any eigenfunction, we have proved that

In particular, since                , we can 
compute the area element on S’ as

Let us consider the generic eigenfunction     on S. How is it transformed by the 
rescaling                ?

unknown

By orthonormality of      :
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The Laplacian

Demo Time!


