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Wrap-up

The last time we studied some important properties of the Laplace-
Beltrami operator A .

The divergence theorem allows us to characterize the Laplacian as a self-
adjoint linear operator:

—(Vf, Vo) = (f,divVv) > (f,Av)=(Af,v)

which admits a representation as a symmetric (and sparse) matrix.
As aresult, it makes sense to study its eigen-decomposition:

Af = —\f
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Wrap-up
Af = —\f

The spectral theorem now tells us that the eigenfunctions of A form an
orthogonal basis for scalar functions defined on our shape.
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Wrap-up
- oo where ¢; are eigenfunctions of A

Since we are working with an orthonormal basis, the Fourier coefficients ¢;
can be recovered by the projections:
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In practice, the eigen-decomposition of A is computed as the generalized
eigenvalue problem Cf =AM f .

Then, we approximate the inner-products as follows:
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Wrap-up

Other properties which are immediate to prove include the following:

/ Af ) for any function f: S — R
S
/ ¢i =0 Ap; = —Ai¢;
S
|| Vi ||2 MY This defines the eigenvalues in terms of the
2 2 e . .
g Dirichlet energy of the eigenfunctions

A=0-—¢; =k



Wrap-up

1 Y ijaf(x) [
oF = vdet g sz: 0x; (g Oz . g)

Since the Laplace-Beltrami operator only depends on g, it is invariant under
isometric deformations of the surface.
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notice the sign flip here 6
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Wrap-up

The eigenvalues of the Laplacian are also an interesting quantity to look at.
They are real, and form a discrete spectrum:

O=X <A1 < <... 29
Weyl’s law also tells us something about their linear growth:
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The Laplacian spectrum has been used as a
global shape descriptor, i.e. to
characterize and distinguish shapes up to e
isometry. 7
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Wrap-up
J= ZG’:@

[f we truncate the summation to the first k terms according to the ordering of
the spectrum, we get an approximation:
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Wrap-up

Finally, we have studied how some intrinsic quantities of the shape change,
when the shape undergoes a scaling transformation.

S — aS

aS
S

In particular, we proved the following mappings:

1 1
dS = a*dS B - i)






Euclidean embeddings

In the previous lectures we have seen how to translate a general, non-rigid
matching problem to a rigid matching problem.

We did so by finding maps f :(X,d,) — (R", H . H) minimizing a quadratic
stress:

f =argmin Z‘dx (X, X. ) dRm (f(x), f (Xj ))‘2 multi-dimensional
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Euclidean embeddings

We referred to the minimizing fas a minimum-distortion embedding of
the shape into Euclidean space.

The minimum-distortion embedding is defined in terms of pairwise
quantities on the shape (namely, evaluations of a distance function).

Can we define alternative embeddings by making use of the new differential-
geometric tools we have introduced?

The embedding should be:

* deformation-invariant
* robust to discretization process

 defined using intrinsic properties of the shape (i.e. metric tensor)
* easy to deal with
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General approach

Construct an embedding that relies on the Laplace-Beltrami operator. Two
important properties are immediately evident:

The operator is isometry invariant
Its eigenfunctions have a global nature, and are thus more stable to local changes

“ " S
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Euclidean embedding via Ag

The most straightforward approach is to map each point p € S toan
infinite-dimensional vector according to the eigenfunctions of Ag:

ASQO:—/\(,O O=X <A1 < A <... >

p = (po(p), v1(p), w2(p),...) € R

Yt' L R
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Euclidean embedding via Ag

po(wolp) ilp) ozl ) € R™

[s this a meaningful embedding?

In general, we can not expect to be given two exactly isometric shapes.
Two main issues we can directly deal with:

* The eigenfunctions have different signs
* The eigenfunctions have different scales

2y
Y0
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Scale-invariant embedding

We already know how these quantities change under rescaling. This allows us
to act directly at the descriptor level, i.e. when the embedding is performed:

p = (po(p), v1(p), v2(p),...)

b

- (5 22 2.

The resulting embedding is scale-invariant. Indeed:

o' ;(p) é%(p) ~0i(®)  p;(p)
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Global Point Signature

e1(p) p2(p) 3(p)

This new, scale-invariant embedding defines a descriptor known as the
Global Point Signature (GPS).

The GPS embedding of a shape is an isometry-invariant Euclidean embedding.

Differently, multi-dimensional scaling was determined only up to rigid
motions!

In practice, GPS is truncated to the first m eigenfunctions.

Main issues:
1. The signs of eigenvectors are undefined
2. Two eigenvectors may be swapped
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Example: Segmentation

9. AS

v & - P < ‘;. y <

Distance maps (standard Euclidean metric on GPS descriptors) from
different source points. Distance goes from blue to red.

Segmentation obtained

via k-means clustering
of the GPS embedding.

Robust to isometric
deformations! %




| Example: Matching

Recall the Gromov-Hausdorff formulation we gave for the matching problem:

I . ;
5@ sup |dy (x,x")—d, (y,Y")
X,¥),(x,y)eR

all possible
correspondences!

We can use descriptors to reduce
the set of correspondences over
which to optimize:

Just consider as good «candidate»
matches the ones among points
with similar descriptors.
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Multiscale property

In general, it would be desirable to have a descriptor which captures geometric
information at different scales.

1;. 3 °
For small scales (locally), points 1

2 4
J ‘ ﬂ and 3 are not distinguishable

The notion of scale we are looking for
should provide a descriptor having an
analogous behavior to the one depicted in
the right figure:




Heat diffusion on surfaces

For a regular surface S the diffusion of heat can be described by the heat
equation:

ou(x, t;up)
ot

= —Au(x,t; ug)

We write u(z,t; ug) for the amount of
heat at point x after time ¢, when at
time zero the distribution of heat is
given by

ulx, 0) = uplz)
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Heat kernel

A solution to the heat equation is given by

e ta) /S rC L

The function k; : S x S — R is called the heat kernel of manifold S, and it
describes how much heat is transferred from one point to another in time ¢.

In particular, assume we want to diffuse heat from a Dirac distribution placed
at point z € S . By definition, the Dirac ¢, is such that:

/ F(2)8,(x)de = f(2)

In this case (which is the most common in shape analysis), we simply get:

i /S ke, 9)6, () dy = ki, 2)
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Heat kernel in R"

We are now interested in providing an expression for the heat kernel k;(z, y)
of a given manifold.

————————————————————————————————————————————————————————

In R" it is given by:

2
1 Iz —yl

-

e

)

From the expression above we see that the
distance between two points (Euclidean in
this case) can be recovered from the heat
kernel.

The Dirac distribution 9.,
can be modeled as the limit

lim A (z, -)

t—0
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Heat kernel: properties

We are now interested in providing an expression for the heat kernel k;(z, y)
of a given manifold.

The distance between two points on a
manifold can also be recovered from the
heat kernel. The following result is due to
Varadhan:

d3(z,y) = — lim 4t log(k{ (z,y))

t—0
In addition, we have the following The Dirac distribution 9.,
informative property of the heat kernel: can be modeled as the limit
.5 1 , lim Ky (2, -)
& kY (x,y) =k (T(2), T(y)) e

iIsometr
Y >



Solving the heat equation

ou(z,t;up)

5 = —Au(z,t;up)

We know that the eigenfunctions {¢y(x)}3>, of A form a basis, thus for
every t we can write:

ut, z3ug) = > ce(t)dr(z) = ) cx(t)dr(a)
k=0 k=0

The right term of the heat equation can then be written as:

oo o0

—Au(t, z;up) = — Z t)Agy(x Z ck () Ak Pk (x

k=0 k=0

25



Solving the heat equation

ou (:1; t; ug)

s S

The left term can be written as:

8u(tg§; ) . k(ﬁb’)

k=0

= —Au(z,t;up)

An thus we obtain cj(t) = dye **! . We can then write:



Solving the heat equation

ou(z,t;up)
ot

We now know that a solution to the heat equation must have the form:

= —Au(z,t;up)

u(t, z;up) dee_)"“tcbk

An explicit expression for dj, can be obtained from the fact that the initial
condition must be satisfied:

u(0, z; up) deﬁbk —Uo z)

Since ug(x) is arbitrary, we will have different expressions for different initial

distributions of heat. o



Solving the heat equation

k=0

We will consider the Dirac distribution centered at a point as initial condition.
The coefficients dj, can be obtained easily in this case. Let’s see it using
matrix notation:

L s | |

d=|d0 ¢ ... D dpp=0d= || =d=0]s,
L k=0 | |

where we write ®~! = &7 since the basis is orhogonal.

If we represent §,(x) asavector of zeros with a one in the z-th position, then
we simply get d, = ¢r(2).
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An expression for the heat kernel

u(t, x;up) dee_)"“tqbk
G

oo

u(t,2;8,) = Y e Mooy (x)r(2)

k=0

This also gives us an expression for the heat kernel. Since we know:

a0 /S ke, 9)6, () dy = ke, 2)

o @]

then the heat kernel is simply given by: k;(x,y) = Z e () b (v)
k=0



Heat kernel in matrix notation

ke(z,y) = ) e W op(z)drly)

k=0

In matrix notation, we can construct a matrix K; containing the values of
the heat kernel computed between all possible pairs of points:

K, = ®D,®"

where D is a diagonal matrix containing the coefficients e~ *** . Notice that
for t = 0 we simply get K, = ®1dd! = Id.

How big are these matrices in practice?
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Heat kernel in practice

In practice, we only use the first few eigenfunctions:

| ‘ m—1

D— Vg Oy Rl ) — Z B_Akthk(ka(y)

| | =0

This means in particular that the matrix above is only left-orthogonal, in
the sense that:

®Td = 1d ®PT £ Id

m X m nXxXn

Further, recall that in practice we must use the inner product weighted by the
mass matrix, namely &7 )& .
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Heat kernel signature

The heat kernel is obviously an intrinsic quantity of the manifold; moreover,
recall that we have the informative property:

Informative property ,
A surjectiveT : S — S’ isan isometry iff & (z,y) = k7 (T(z),T(y))

Thus, it makes sense to define a descriptor based on the heat kernel.

The idea here is quite simple: since we want to describe a given point, we can
just consider the diagonal of the matrix K, = ®D,®?, which contains the

elements:
m—1

i AT Note that we avoid the
ki (277 517) o E : e Cbk (SL‘) sign ambiguity of the
k=0 eigenfunctions!
32
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Heat kernel signature




Heat kernel signature

We define the Heat Kernel Signature (HKS) at a point € .S’ as the vector of
heat kernels compute at T time values:

HKS(z) = (ki (z,2),. .., kip(z,2)) € RT

In this view, each evaluation of the heat kernel in the vector above describes

the amount of heat staying at point x after time ¢, when starting with a unit
heat source at x itself.

The HKS also has an informative property. If the eigenvalues of the

Laplacian of S and S*are not repeated, then a homeomorphism T': S — S’ is
an isometry iff k% (z,z) = k7 (T(x),T(x)).
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Heat kernel signature

—vertex on mesh 1
—vertex on mesh 2

heat

2 ‘ time
0 1 2 3
=
o —vertex on nose
“~ —vertex on chest
6,
4
2,
time
00 0.2 0.4 0.6
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Multiscale property

{k¢(x,z)} encodes information about neighborhood in a multiscale fashion.

Distance between the two descriptors
over time:

x10°

08 //
06F /

04F /

02} /

0 . L —_t | 1 1 1 I I
0 100 2000 300 400 500 6BOO 700 800 500 1000
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Scaled Heat Kernel Signature

8

Difference |k:(x, z) — ki(2’, 2)| decreases 3 - nmaR
exponentially as t increases. 6
Large scales have minor influence. 4
Workaround =
Consider scaled heat kernel signatures —
(0, 2) e 65 04 o6
t\ L,
SHKS(LU,t) — : 0.25 ‘ ;
Js Fe(y, y)dy
0.2r 7
By doing so, the differences between 0.15 i
—vertex on chest

two signatures at different time scales
contribute approximately equally.

@]
scaled heat

: time
0.2 0.4 0.6 37
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Heat kernel signature

—vertex on mesh 1
—vertex on mesh 2

0.2

heat

0.18¢

Vs -

scaled heat

0.16f

—vertex on mesh 1

Ot —vertex on mesh 2||
0.12}
time Yme
0 0.1
0 1 o) 3 0 1 2 3
S e 0.25
o —vertex on nose
~ —vertex on chest
6 1 0.2¢ :

—vertex on nose
—vertex on chest
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scaled heat

time

: time
02 0.4 38 0.6

0.2 0.4 0.6 0.05
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Feature points can be selected as the local maxima of k:(x, z) fora fixed ¢, or
as the persistent maxima across different time steps.
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Suggested reading

Laplace-Beltrami eigenfunctions for deformation
invariant shape representation. Rustamov. Proc. SGP
2007.

A concise and provably informative multi-scale

signature based on heat diffusion. Sun, Ovsjanikov,
Guibas. Proc. SGP 2000.



