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Wrap-up
The last time we studied some important properties of the Laplace-
Beltrami operator .

The divergence theorem allows us to characterize the Laplacian as a self-
adjoint linear operator:

As a result, it makes sense to study its eigen-decomposition:

which admits a representation as a symmetric (and sparse) matrix.
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Wrap-up

The spectral theorem now tells us that the eigenfunctions of       form an 
orthogonal basis for scalar functions defined on our shape.

constant Fiedler
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In practice, the eigen-decomposition of      is computed as the generalized 
eigenvalue problem                       .

Wrap-up

Since we are working with an orthonormal basis, the Fourier coefficients
can be recovered by the projections:

where       are eigenfunctions of 

Then, we approximate the inner-products as follows:
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Wrap-up
Other properties which are immediate to prove include the following:

for any function

This defines the eigenvalues in terms of the 
Dirichlet energy of the eigenfunctions
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Wrap-up

Since the Laplace-Beltrami operator only depends on g, it is invariant under 
isometric deformations of the surface.

6notice the sign flip here



Wrap-up
The eigenvalues of the Laplacian are also an interesting quantity to look at. 
They are real, and form a discrete spectrum:

Weyl’s law also tells us something about their linear growth:

The Laplacian spectrum has been used as a 
global shape descriptor, i.e. to 
characterize and distinguish shapes up to 
isometry. 7



Wrap-up
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If we truncate the summation to the first k terms according to the ordering of 
the spectrum, we get an approximation:



Wrap-up
Finally, we have studied how some intrinsic quantities of the shape change, 
when the shape undergoes a scaling transformation.

rescale

In particular, we proved the following mappings:
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Point descriptors
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Euclidean embeddings
In the previous lectures we have seen how to translate a general, non-rigid 
matching problem to a rigid matching problem.
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We did so by finding maps                                                 minimizing a quadratic 
stress:
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Euclidean embeddings
We referred to the minimizing f as a minimum-distortion embedding of 
the shape into Euclidean space.

The minimum-distortion embedding is defined in terms of pairwise
quantities on the shape (namely, evaluations of a distance function).

Can we define alternative embeddings by making use of the new differential-
geometric tools we have introduced?

The embedding should be:

• deformation-invariant
• robust to discretization process
• defined using intrinsic properties of the shape (i.e. metric tensor)
• easy to deal with 12



General approach
Construct an embedding that relies on the Laplace-Beltrami operator. Two 
important properties are immediately evident:

• The operator is isometry invariant
• Its eigenfunctions have a global nature, and are thus more stable to local changes
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Euclidean embedding via

The most straightforward approach is to map each point             to an 
infinite-dimensional vector according to the eigenfunctions of        :
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Euclidean embedding via

Is this a meaningful embedding?

In general, we can not expect to be given two exactly isometric shapes.
Two main issues we can directly deal with:

• The eigenfunctions have different signs
• The eigenfunctions have different scales

rescale
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Scale-invariant embedding
We already know how these quantities change under rescaling. This allows us 
to act directly at the descriptor level, i.e. when the embedding is performed:

The resulting embedding is scale-invariant. Indeed:

rescale
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Global Point Signature

This new, scale-invariant embedding defines a descriptor known as the 
Global Point Signature (GPS).

The GPS embedding of a shape is an isometry-invariant Euclidean embedding.

Differently, multi-dimensional scaling was determined only up to rigid 
motions!

In practice, GPS is truncated to the first m eigenfunctions.

Main issues:
1. The signs of eigenvectors are undefined
2. Two eigenvectors may be swapped
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Example: Segmentation

Distance maps (standard Euclidean metric on GPS descriptors) from 
different source points. Distance goes from blue to red.

Segmentation obtained 
via k-means clustering 
of the GPS embedding.

Robust to isometric 
deformations! 18



Example: Matching
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Recall the Gromov-Hausdorff formulation we gave for the matching problem:

all possible 
correspondences!

We can use descriptors to reduce
the set of correspondences over 
which to optimize:

Just consider as good «candidate» 
matches the ones among points 
with similar descriptors.
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Multiscale property

For small scales (locally), points 1 
and 3 are not distinguishable

In general, it would be desirable to have a descriptor which captures geometric 
information at different scales.

The notion of scale we are looking for 
should provide a descriptor having an 
analogous behavior to the one depicted in 
the right figure:

20



Heat diffusion on surfaces
For a regular surface S the diffusion of heat can be described by the heat
equation: 

We write                    for the amount of 
heat at point x after time t, when at 
time zero the distribution of heat is 
given by
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Heat kernel
A solution to the heat equation is given by

The function is called the heat kernel of manifold S, and it 
describes how much heat is transferred from one point to another in time t.

In particular, assume we want to diffuse heat from a Dirac distribution placed 
at point            . By definition, the Dirac       is such that:

In this case (which is the most common in shape analysis), we simply get:

22



Heat kernel in Rn

In        it is given by:

The Dirac distribution      
can be modeled as the limit

We are now interested in providing an expression for the heat kernel                
of a given manifold.

From the expression above we see that the 
distance between two points (Euclidean in 
this case) can be recovered from the heat 
kernel.
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Heat kernel: properties
We are now interested in providing an expression for the heat kernel                
of a given manifold.

The Dirac distribution      
can be modeled as the limit

The distance between two points on a 
manifold can also be recovered from the 
heat kernel. The following result is due to 
Varadhan:

In addition, we have the following 
informative property of the heat kernel:

isometry
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Solving the heat equation

We know that the eigenfunctions                       of       form a basis, thus for 
every t we can write:

The right term of the heat equation can then be written as:
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An thus we obtain                              . We can then write:

Solving the heat equation

The left term can be written as:
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Since            is arbitrary, we will have different expressions for different initial 
distributions of heat.

Solving the heat equation

!

We now know that a solution to the heat equation must have the form:

An explicit expression for       can be obtained from the fact that the initial 
condition must be satisfied:
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Solving the heat equation

We will consider the Dirac distribution centered at a point as initial condition. 
The coefficients       can be obtained easily in this case. Let’s see it using 
matrix notation:

If we represent             as a vector of zeros with a one in the z-th position, then 
we simply get                     .

where we write                    since the basis is orhogonal.
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An expression for the heat kernel

This also gives us an expression for the heat kernel. Since we know:

then the heat kernel is simply given by:
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Heat kernel in matrix notation

In matrix notation, we can construct a matrix        containing the values of 
the heat kernel computed between all possible pairs of points:

where D is a diagonal matrix containing the coefficients            . Notice that 
for            we simply get                                   .

How big are these matrices in practice?
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Heat kernel in practice

In practice, we only use the first few eigenfunctions:

This means in particular that the matrix above is only left-orthogonal, in 
the sense that:

Further, recall that in practice we must use the inner product weighted by the 
mass matrix, namely                .
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Heat kernel signature

Informative property
A surjective is an isometry iff

The heat kernel is obviously an intrinsic quantity of the manifold; moreover, 
recall that we have the informative property:

Thus, it makes sense to define a descriptor based on the heat kernel. 

The idea here is quite simple: since we want to describe a given point, we can 
just consider the diagonal of the matrix                          , which contains the 
elements:

Note that we avoid the 
sign ambiguity of the 
eigenfunctions!
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Heat kernel signature
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Heat kernel signature

In this view, each evaluation of the heat kernel in the vector above describes 
the amount of heat staying at point x after time t, when starting with a unit
heat source at x itself.

The HKS also has an informative property. If the eigenvalues of the
Laplacian of S and S‘ are not repeated, then a homeomorphism is
an isometry iff .                                                

We define the Heat Kernel Signature (HKS) at a point             as the vector of 
heat kernels compute at T time values:

34



Heat kernel signature
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Multiscale property
encodes information about neighborhood in a multiscale fashion.

Distance between the two descriptors 
over time:
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Scaled Heat Kernel Signature
Difference decreases
exponentially as t increases.

Large scales have minor influence.

Workaround
Consider scaled heat kernel signatures

By doing so, the differences between 
two signatures at different time scales 
contribute approximately equally.
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Heat kernel signature

38



Example: Feature detection

Feature points can be selected as the local maxima of                for a fixed t, or 
as the persistent maxima across different time steps.

39



Suggested reading
 Laplace-Beltrami eigenfunctions for deformation 

invariant shape representation. Rustamov. Proc. SGP 
2007.

 A concise and provably informative multi-scale 
signature based on heat diffusion. Sun, Ovsjanikov, 
Guibas. Proc. SGP 2009.
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