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Wrap-up
We introduced the notion of point-based shape descriptor, and provided a few 
possible definitions such as the GPS, corresponding to the simple mapping:



Minimum distortion correspondence

Typical minimum-distortion correspondence problems are defined in 
terms of first- and second-order distortion terms. Given two shapes X and 
Y, they consider the following minimization problem over all possible 
correspondences                      :

where the distortion terms are defined, for example, as:

descriptor similarity

metric similarity



Shapes as metric spaces

As we know, one successful way to model the matching problem is to 
consider shapes as metric spaces:

set of points metric function

We have seen this simple model arising in several different topics, such as:

• Distance between shapes (Lipschitz, Gromov-Hausdorff, …)
• Multi-dimensional scaling (Euclidean embeddings, canonical forms, …)
• Differential geometry (“natural” distance on regular surfaces)
• Functional maps (distance maps to landmark correspondences)



Gromov-Hausdorff distance
For example, let’s look again at our discretization of the Gromov-Hausdorff 
distance between two metric spaces:
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Gromov-Hausdorff distance
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We already know that the correspondence attaining the infimum will be 
invariant exactly to the kind of transformations to which the metrics              
are invariant.
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Multi-dimensional scaling
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Multi-dimensional scaling
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Topological noise can significantly alter distances.
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Geodesic distance

We have seen that the first fundamental form on regular surfaces allows us to 
measure lengths of curves lying on the surface.

We defined the distance d(p,q) between two points of S as

where

This “natural” intrinsic distance on the surface is commonly referred to as 
geodesic distance in the shape analysis literature.



Geodesic distance

Since isometries preserve the first fundamental form, the geodesic distance 
is preserved under isometries.



Heat diffusion

We have seen how heat diffusion on regular surfaces allows to capture 
their intrinsic geometry. In particular, we studied the following model:

A solution to the heat equation is given by:

The function , called heat kernel, describes how much
heat is transferred from one point to the other in time t.



Heat kernel

We provided an explicit expression for the heat kernel in       :

as well as in the case of regular surfaces S:

We didn’t give any formal proof, but we stated that one can recover the 
geodesic distance on a surface directly from the heat kernel:



A distance based on heat diffusion

Based on these observations, we ask the following question:

Can we define a new notion of distance based on the ideas of heat 
diffusion?

A natural candidate for such a distance is the heat kernel                 itself. 

However, it is not difficult to see that such a function does not satisfy all the 
metric axioms. In particular, if we look again at the spectral decomposition

we immediately realize that



Diffusion kernel

The heat kernel                satisfies the properties of a diffusion kernel:

(non-negativity)

(positive semi-definiteness)

(square integrability)

(symmetry)

(conservation) in matrix notation, this 
corresponds to a stochastic matrix



Random walks
A random walk is a path modeled as a succession of random steps.

For example, the path traced by a molecule in a liquid, or the path 
walked by a drunken sailor from the bar to a lamp post.

Brownian motion is the random motion of 
particles suspended in a fluid. The randomness 
is the result of the particles colliding with the 
fluid molecules (or atoms in the case of a gas).



Brownian motion
The physical phenomenon of Brownian motion was modeled mathematically 
by Einstein in 1905. 

In particular, he showed that if              is the density of Brownian particles 
(number of particles per unit volume) at point x and time t, then u satisfies 
the diffusion equation:

where D is the mass diffusivity or diffusion coefficient, 
in general a non-linear function which depends on 
physical properties such as temperature and viscosity

We already know that a solution to this diffusion equation (with             ) is 
given by:



Brownian particles
For example, assuming that N particles start from the origin, in Euclidean 
space the diffusion equation has the solution:

In this view, we can regard heat diffusion 
as Brownian particles running away from 
their initial distribution.

In the case of a manifold, we can imagine these tiny particles moving 
chaotically over the surface and away from the initial position.



Probability density function

Thus, the heat diffusion equation provides a model of the time evolution of 
the probability density function             .

Now recall that we have the conservation property:

In other words, the particle density function              can be seen as a 
probability density function associated to the position of a particle 
undergoing a Brownian motion.



Brownian motion and heat kernel

Yesterday we have seen that, if we start from a      distribution centered 
around           , we get:

Thus, the probability that a particle is in a small region C around point x after 
time t, is given by



A probabilistic interpretation

Brownian motion starting at point x, reaching C in 
time t, with probability given by:

This tells us that               is the probability density function of transition
from x to y by a random walk of length t.

To emphasize this relationship, some authors denote 
the heat kernel by



Diffusion distance

A family of diffusion distances can be defined by

which is nothing but a       distance between two probability density 
functions. Note that the expression above is defining      , not     .



Properties

• It is a metric.

• It reflects the connectivity of the data at a given scale (denoted by t). If two 
points x and y are close (in the diffusion sense), there is a large probability 
of transition from x to y and vice versa.

• Diffusion time t plays the role of a scale parameter.

• The definition involves summing over all paths of length      connecting x
to y. As a consequence, this number is very robust to noise perturbation, 
unlike the geodesic distance (this path-length argument will be evident in 
two slides).



«Lengths of paths»

To prove this property, we start with a particular initial heat distribution:

Then, applying the heat diffusion model, it must be:

One useful property of the heat kernel (which we hinted at in the last bullet 
point of the previous slide) is the following:

for some y

Setting             and equating the two expressions for             , we obtain the 
desired result.



Alternative definition

Indeed, this is the original definition given by Coifman et al. (see suggested 
reading).

Therefore, we can write:

One special case of the previous property is the following:



Diffusion distance in the LB basis

if
otherwise



Example: Diffusion distance



Pitfall



Diffusion map

The definition we gave for the diffusion distance suggests the following 
Euclidean embedding, called diffusion map:

for a fixed

We have already seen another similar embedding, which we called GPS:

The diffusion distance is the Euclidean distance among diffusion maps.



Scale-invariant intrinsic metric

It is not difficult to see (check it!) that the diffusion map is not scale 
invariant.

However, by analogy between GPS and diffusion map, the previous slides 
raise the question on whether the following definition is a valid intrinsic 
metric function:

That is, the       distance between two global point signatures at points x and y.



where                                                      is the commute-time kernel.

Commute-time distance

Indeed, it can be proved that this is in fact a metric function! Since we 
already proved that the GPS embedding is scale-invariant, it is not difficult 
to see that this metric is also scale-invariant.

The resulting metric is called commute-time distance.

Similarly to the diffusion distance, this distance can be rewritten in “kernel 
notation” as:



Commute-time kernel

In other words, the commute-time kernel corresponds to the probability density 
function of transition from point x to y by a random walk of any length. 

At this point, it is interesting to notice the following fact:

(integrate over all possible times)



Example: Commute-time distance

diffusion, t=10 commute-time



Example: Non-isometries

diffusion, t=5 commute-time



Suggested reading
 Geometric diffusions as a tool for harmonic analysis 

and structure definition of data: Diffusion maps. 
Coifman et al. PNAS 2005.

 Über die von der molekularkinetischen Theorie der 
Wärme geforderte Bewegung von in ruhenden 
Flüssigkeiten suspendierten Teilchen. Einstein. 
Annalen der Physik 2005.

 Discrete minimum distortion correspondence problems 
for non-rigid shape matching. Wang et al. Proc. SSVM 
2011.


