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Wrap-up

We introduced the Laplace-Beltrami operator       for regular surfaces and 
noted it is an isometry invariant quantity of the shape.

In the last few lectures, we used quantities derived from      in order to 
construct descriptors as well as metrics for our manifolds.

The general idea is being able to formulate and solve matching problems of 
the general form:

descriptor similarity metric similarity



Wrap-up

We alternatively denoted our intrinsic descriptors as isometry-invariant 
Euclidean embeddings of the surface. In particular, we considered the 
mappings:

GPS

diffusion map

HKS



Wrap-up
We introduced a new intrinsic metric known as diffusion distance:



Wrap-up
The diffusion distance admits an equivalent expression in terms of the heat 
kernel:

Integrating the heat kernel over all times, we came to the definition of the 
commute-time kernel, which equals the Green’s function for the manifold:

Hence we defined the commute-time distance as:



diffusion commute-time



Representing correspondences

0 1 0 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

We have already seen that a correspondence can be represented by a matrix
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corresponds to require R to 
be a permutation matrix.
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Representing correspondences
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We defined the cost matrix                      such that:
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Quite big!

Can we do better than this?



Let                       be a bijection between two regular surfaces M and N.

Given a scalar function                      on shape M, we can induce a function     
on the other shape by composition:

A map between functions

We can denote this transformation by a functional       , such that

We call        the functional representation of T.



Functional maps are linear
Note that        is a linear map between function spaces:

This means that we can give a matrix representation for it, after we choose 
a basis for the two function spaces on M and N.

The key observation here is that, while T can in general be a very complex 
transformation between the two shapes,       always acts linearly.

It remains to see whether knowledge of T is equivalent to knowledge of       , 
and vice versa.

by linearity of the composition 
operator



Recovering      from
If we know T, we can obviously construct       by its definition 

Let’s see if we can also do the contrary. That is, assume we know how to map 
functions to functions, and we want to be able to map points to points.

We first construct an indicator function                      on the first shape, such 
that                 , and                                        .

Then if we call                    , it must be                                         whenever
, and                 otherwise. Since T is a bijection, this happens 

only once, and T(a) is the unique point             such that                .
In other words, we have reconstructed T from      .

At this point it is still a bit unclear why we introduced 
functional mappings in the first place. Let’s see!



Matrix notation (1/2)

Let            be a basis for functions f on M, so that                         . Then we 
can write:

Similarly, if            is a basis for functions on N, we can write:

Putting the two equations together, we get:



Matrix notation (2/2)

So we can represent each function f on M by its coefficients    , and similarly 
function on M by its coefficients     .

If the basis for functions f on M is orthogonal with respect to some inner 
product         , then we can simply write                        . Similarly on N, we can 
write                                     .

Rewriting in matrix notation the equations above, we have:



Choice of a basis

Up until now we have been assuming the presence of a basis for functions 
defined on the two shapes. The first possibility is to consider the standard 
basis on each shape, that is the set of indicator functions defined at each 
vertex:

i-th vertex

permutation 
matrix

The two terms 
in the inner 
product are 
indicator 
functions



Choice of a basis
We already know another possibility!

The eigenfunctions of the Laplace-Beltrami operator form an orthogonal 
basis (w.r.t. weighted inner product           ) for      functions on each shape.

In particular, we have seen that we can approximate:



Choice of a basis

This means that we can also approximate:

And then, going back to matrix notation we find out that we are reducing 
the size of matrix C quite a lot.

Matrix C, which represents our 
correspondence, is a
matrix. Its size does not depend 
on the size of the shapes!

Typical values for m are 50 or 100

Moreover, matrices 
associated to correct 
correspondences tend 
to be sparse.



From P to C
Given a correspondence (bijection)          (in matrix notation, it can be 
written as a permutation matrix P), we can construct the associated 
functional map as follows:

indicator function for vertex 

We know it must be:

indicator function for vertex 

indicator function in 
the              basis

indicator function mapped 
to the              basis

indicator function on the other 
shape



Projecting onto the eigenbasis

Note that in general we cannot say                      , because our eigenbasis is 
not orthogonal with respect to the standard inner product         .

Given a correspondence, we now know how to construct a functional map out 
of it. More than that, we have a way to approximate the correspondence and 
thus reduce the space taken by the representation.

This is simply done by choosing the number of eigenfunctions to use when 
performing the projection                    , that is

Indeed, our basis is orthogonal w.r.t. the mass-weighted inner product

Since                                 , we simply have



Another look
Let us have another look at the formula relating the standard permutation 
matrix with the functional map:

each column is an eigenfunctionpermutes the rows of  

Simply put, the functional map matrix C contains all the inner products 
between the eigenfunctions of the two shapes, after vertex ordering has 
been disambiguated by the known bijection P.

Then, if we use the standard bases in the two shapes, we simply get:



Exact isometries: eigenbases

sign flip

Assume we are given two exactly isometric shapes. Then, we expect the 
eigenvectors of the two Laplacians to be identical up to sign, and up to 
vertex ordering.



Exact isometries: functional map

Since the permutation P is taking care of the vertex ordering, we are left with 
inner products that yield either 0, 1, -1.

exact isometry near-isometry



Examples

Fully encodes the original map T.
Note that this is a linear mapping!

Note also that not
every linear map 
corresponds to a 
point-to-point 
correspondence!



Function transfer

Functional maps provide us a compact way to transfer functions between 
surfaces.

A simple example is segmentation transfer:



Cat algebra
Since we are now dealing with matrices (i.e. linear transformations), we can 
use all the tools from linear algebra to deal with our functional maps (e.g. 
sum or composition).

As a simple example, here we map the colors from a 
source shape (left) to a target shape (down), using an 
interpolation of “direct” and “symmetric” ground-truth 
maps according to 



,                                 ,  and then preserve the two functions as in the previous case.

Imposing linear constraints

Interestingly, many common constraints that are used in shape matching 
problems also become linear in the functional map formulation.

Descriptor preservation

Landmark matches

function on M function on N

For instance, consider 
curvature or other 
descriptors.

If we are given a k-dimensional descriptor, we 
can just phrase k such equations, one for each 
dimension:

Assume we know that                    . We can define two distance maps:



Matching with functional maps

The functional maps representation can be employed to determine a 
correspondence between two shapes.

Using the ideas from the previous slide, we can just set up a linear system:

under-determined

over-determined

full rank

In the common case in which              , we can solve the resulting linear system 
in the least-squares sense:



Convert C back to T
Once we have found an optimal functional map C*, we may want to convert 
it back to a point-to-point correspondence.

Simplest idea: Use C* to map indicator functions at each point.

This approach is inefficient and sensitive 
to truncation effects.

(this looks like the 
flag of Turkey)



can then be regarded as a 
set of n points in

Convert C back to T
Observe that the delta function      centered around             , when represented 
in the eigenbasis            , has as coefficients the k-th column of matrix          , 
where k is the index of point .

representation of an indicator 
function in the eigenbasis

representation of all the 
indicator functions



Clearly, the same can be said for the eigenfunctions of the second shape,

Convert C back to T

Applying the functional map C to the columns of          is equivalent to 
aligning the two point sets:

In fact, recall that by mapping 
indicator functions we were 
expecting to have



Convert C back to T

Thus, the problem of converting a functional map back to a point-wise 
correspondence can be phrased as a simple nearest-neighbors search in

Specifically, the algorithm consists in seeking, for each column of        , the 
nearest column of             in the L2 sense (the standard metric in        ).

This is especially convenient, since efficient data structures exist for this kind 
of problems (e.g. kd-trees, octrees, etc.).



Main issues
The functional maps representation provides a very convenient framework for 
shape matching, but most of its power derives from the availability of an 
appropriate basis.

Laplace-Beltrami eigenbasis: robust to nearly-isometric deformations only!

Recent approaches get state-of-the-art results by 
explicitly requiring C to have a diagonal structure.

Other approaches try to define an optimal basis 
given two shapes undergoing general deformations.



Suggested reading
 Functional maps: A flexible representation of maps 

between surfaces. Ovsjanikov et al. SIGGRAPH 2012.


