
Functional Maps
(08.06.2015)

Dr. Emanuele Rodolà
rodola@in.tum.de

Room 02.09.058, Informatik IX

mailto:rodola@in.tum.de

Wrap-up

We introduced the Laplace-Beltrami operator for regular surfaces and
noted it is an isometry invariant quantity of the shape.

In the last few lectures, we used quantities derived from in order to
construct descriptors as well as metrics for our manifolds.

The general idea is being able to formulate and solve matching problems of
the general form:

descriptor similarity metric similarity

Wrap-up

We alternatively denoted our intrinsic descriptors as isometry-invariant
Euclidean embeddings of the surface. In particular, we considered the
mappings:

GPS

diffusion map

HKS

Wrap-up
We introduced a new intrinsic metric known as diffusion distance:

Wrap-up
The diffusion distance admits an equivalent expression in terms of the heat
kernel:

Integrating the heat kernel over all times, we came to the definition of the
commute-time kernel, which equals the Green’s function for the manifold:

Hence we defined the commute-time distance as:

diffusion commute-time

Representing correspondences

0 1 0 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

We have already seen that a correspondence can be represented by a matrix

  nn
R


 1,0

X

Y

Asking for a bijection
corresponds to require R to
be a permutation matrix.

In other words, we are
optimizing over all
permutations of  n,,1

1 2 3 4 5X



3 5 2 1 4Y

Does not scale well
with the size of the
shapes

Representing correspondences
),(),(maxmin

2

1
),(

,1
jiji

njiP
yydxxdd

n




YXYX 


P

We defined the cost matrix such that:
22 nnC R

),(),())((mjijmi yydxxdC  YX 

0 13.5 23.4 104.6 7.64

13.5 0 13.52 11.2 71.1

23.4 13.52 0 0.22 23.44

104.6 11.2 0.22 0 16.5

7.64 71.1 23.44 16.5 0

),(11 yx

),(21 yx

),(31 yx



),(11 yx),(21 yx),(31 yx  

Quite big!

Can we do better than this?

Let be a bijection between two regular surfaces M and N.

Given a scalar function on shape M, we can induce a function
on the other shape by composition:

A map between functions

We can denote this transformation by a functional , such that

We call the functional representation of T.

Functional maps are linear
Note that is a linear map between function spaces:

This means that we can give a matrix representation for it, after we choose
a basis for the two function spaces on M and N.

The key observation here is that, while T can in general be a very complex
transformation between the two shapes, always acts linearly.

It remains to see whether knowledge of T is equivalent to knowledge of ,
and vice versa.

by linearity of the composition
operator

Recovering from
If we know T, we can obviously construct by its definition

Let’s see if we can also do the contrary. That is, assume we know how to map
functions to functions, and we want to be able to map points to points.

We first construct an indicator function on the first shape, such
that , and .

Then if we call , it must be whenever
, and otherwise. Since T is a bijection, this happens

only once, and T(a) is the unique point such that .
In other words, we have reconstructed T from .

At this point it is still a bit unclear why we introduced
functional mappings in the first place. Let’s see!

Matrix notation (1/2)

Let be a basis for functions f on M, so that . Then we
can write:

Similarly, if is a basis for functions on N, we can write:

Putting the two equations together, we get:

Matrix notation (2/2)

So we can represent each function f on M by its coefficients , and similarly
function on M by its coefficients .

If the basis for functions f on M is orthogonal with respect to some inner
product , then we can simply write . Similarly on N, we can
write .

Rewriting in matrix notation the equations above, we have:

Choice of a basis

Up until now we have been assuming the presence of a basis for functions
defined on the two shapes. The first possibility is to consider the standard
basis on each shape, that is the set of indicator functions defined at each
vertex:

i-th vertex

permutation
matrix

The two terms
in the inner
product are
indicator
functions

Choice of a basis
We already know another possibility!

The eigenfunctions of the Laplace-Beltrami operator form an orthogonal
basis (w.r.t. weighted inner product) for functions on each shape.

In particular, we have seen that we can approximate:

Choice of a basis

This means that we can also approximate:

And then, going back to matrix notation we find out that we are reducing
the size of matrix C quite a lot.

Matrix C, which represents our
correspondence, is a
matrix. Its size does not depend
on the size of the shapes!

Typical values for m are 50 or 100

Moreover, matrices
associated to correct
correspondences tend
to be sparse.

From P to C
Given a correspondence (bijection) (in matrix notation, it can be
written as a permutation matrix P), we can construct the associated
functional map as follows:

indicator function for vertex

We know it must be:

indicator function for vertex

indicator function in
the basis

indicator function mapped
to the basis

indicator function on the other
shape

Projecting onto the eigenbasis

Note that in general we cannot say , because our eigenbasis is
not orthogonal with respect to the standard inner product .

Given a correspondence, we now know how to construct a functional map out
of it. More than that, we have a way to approximate the correspondence and
thus reduce the space taken by the representation.

This is simply done by choosing the number of eigenfunctions to use when
performing the projection , that is

Indeed, our basis is orthogonal w.r.t. the mass-weighted inner product

Since , we simply have

Another look
Let us have another look at the formula relating the standard permutation
matrix with the functional map:

each column is an eigenfunctionpermutes the rows of

Simply put, the functional map matrix C contains all the inner products
between the eigenfunctions of the two shapes, after vertex ordering has
been disambiguated by the known bijection P.

Then, if we use the standard bases in the two shapes, we simply get:

Exact isometries: eigenbases

sign flip

Assume we are given two exactly isometric shapes. Then, we expect the
eigenvectors of the two Laplacians to be identical up to sign, and up to
vertex ordering.

Exact isometries: functional map

Since the permutation P is taking care of the vertex ordering, we are left with
inner products that yield either 0, 1, -1.

exact isometry near-isometry

Examples

Fully encodes the original map T.
Note that this is a linear mapping!

Note also that not
every linear map
corresponds to a
point-to-point
correspondence!

Function transfer

Functional maps provide us a compact way to transfer functions between
surfaces.

A simple example is segmentation transfer:

Cat algebra
Since we are now dealing with matrices (i.e. linear transformations), we can
use all the tools from linear algebra to deal with our functional maps (e.g.
sum or composition).

As a simple example, here we map the colors from a
source shape (left) to a target shape (down), using an
interpolation of “direct” and “symmetric” ground-truth
maps according to

, , and then preserve the two functions as in the previous case.

Imposing linear constraints

Interestingly, many common constraints that are used in shape matching
problems also become linear in the functional map formulation.

Descriptor preservation

Landmark matches

function on M function on N

For instance, consider
curvature or other
descriptors.

If we are given a k-dimensional descriptor, we
can just phrase k such equations, one for each
dimension:

Assume we know that . We can define two distance maps:

Matching with functional maps

The functional maps representation can be employed to determine a
correspondence between two shapes.

Using the ideas from the previous slide, we can just set up a linear system:

under-determined

over-determined

full rank

In the common case in which , we can solve the resulting linear system
in the least-squares sense:

Convert C back to T
Once we have found an optimal functional map C*, we may want to convert
it back to a point-to-point correspondence.

Simplest idea: Use C* to map indicator functions at each point.

This approach is inefficient and sensitive
to truncation effects.

(this looks like the
flag of Turkey)

can then be regarded as a
set of n points in

Convert C back to T
Observe that the delta function centered around , when represented
in the eigenbasis , has as coefficients the k-th column of matrix ,
where k is the index of point .

representation of an indicator
function in the eigenbasis

representation of all the
indicator functions

Clearly, the same can be said for the eigenfunctions of the second shape,

Convert C back to T

Applying the functional map C to the columns of is equivalent to
aligning the two point sets:

In fact, recall that by mapping
indicator functions we were
expecting to have

Convert C back to T

Thus, the problem of converting a functional map back to a point-wise
correspondence can be phrased as a simple nearest-neighbors search in

Specifically, the algorithm consists in seeking, for each column of , the
nearest column of in the L2 sense (the standard metric in).

This is especially convenient, since efficient data structures exist for this kind
of problems (e.g. kd-trees, octrees, etc.).

Main issues
The functional maps representation provides a very convenient framework for
shape matching, but most of its power derives from the availability of an
appropriate basis.

Laplace-Beltrami eigenbasis: robust to nearly-isometric deformations only!

Recent approaches get state-of-the-art results by
explicitly requiring C to have a diagonal structure.

Other approaches try to define an optimal basis
given two shapes undergoing general deformations.

Suggested reading
 Functional maps: A flexible representation of maps

between surfaces. Ovsjanikov et al. SIGGRAPH 2012.

