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Wrap-up
We have introduced the notion of 
“compatible bases” as basis functions 
being related by the relation:

We have analyzed an algorithm to 
compute compatible bases among 
arbitrary shapes.



Wrap-up

Then, we have analyzed an extension to the functional maps framework, 
allowing to compute accurate correspondences with very sparse data:

unknown permutation                unknown functional map               mask promoting diagonal C



Area preservation

In the discrete case, we call a bijection / permutation “area-preserving” if 
and only if the area matrices are equal up to permutation:

We say that a bijection           is area-preserving if it preserves the 
area elements:

In the following we will consider two shapes      and     , and we will denote 
the associated quantities by using the same indices. For instance,        is the 
mass matrix for      , while         is the local area element for      .



Area preservation

Suppose now that we are given a bijection such that:

for all scalar functions                         .

Then, if we define f and g to be indicator functions for some region              , 
it follows that the area of      equals the area of                .

In other words, we get that if T preserves the inner product, then T is an 
area-preserving bijection.



Area preservation

Conversely, suppose T is area preserving, that is 

Then, for any function                      we have:

By setting                               , we get:

In other words, if T is area-preserving then it preserves the inner 
product.



Area preservation and inner products

Let us be given two surfaces       and      . Let                        be a bijection 
between them, and let                                       be the associated functional 
map, defined as:

By writing the inner product as

the following holds if and only if T is area preserving:

Preserving areas is 
equivalent to preserving 
inner products.



Map distortion

It is natural to quantify the distortions induced by the map through the 
failure of this equality. This would give us a new measure of shape 
similarity in terms of area distortion.

Of course, such a notion will depend on the chosen functions f and g. The 
challenge is to provide a more general discrepancy measure.



Representation theorem

Theorem: Every can be written uniquely as an inner product:

Let us recall the Riesz representation theorem:

Hilbert space (vector space with an inner product)
This is our function space with the usual manifold inner product

dual space of H

unique

In our case, let us just fix some function g, and consider

In particular, x can be written as the application of a unique linear 
transformation D. In other words, we can write:



Difference operator

This seems trivial, but now notice that, instead of computing                on     ,
we can apply the functional map F and compute instead                            .

Then, the representation theorem allows us to write:

where                                        is a linear operator (in particular, it is a self-
map) which we will call the difference between the two inner products.



Difference operator

The linear operator D modifies the function g, so as to exactly compensate 
for the area distortions introduced by the functional map F.

The nice thing about this, is that D is “universal”: it is unique and works 
simultaneously for all functions f and g.

The difference operator D depends on:

• The functional map F
• The inner products on the two shapes (in fact, we will see example of 
inner products which are different from the standard definition).



Difference operator: example

In this example, the difference operator is called V instead of D.



Shape difference

In the following we will rename the difference operator D simply as             .
By writing so, we will assume that we are using the usual manifold inner 
products.

Then, two shape differences             and             are still functions on       even 
if they are defined using maps to different shapes. 

This allows us to “compare differences” (more on this tomorrow).

Recall that D maps onto the domain, i.e.:



Discretization: standard basis

Applying the discretizations we are familiar with, we get:

from which we obtain an explicit expression for D:

where we discretized the functional map using the standard “hat” basis.

doesn’t scale well with 
the size of the shapes!



Discretization: area ratios

As a simple example, consider the case in which the two shapes have exactly 
the same tessellations, and the same vertex orderings. Then the functional 
map F is simply the identity matrix, and we have:

In this case we have the intuitive interpretation of the shape difference as 
the point-wise area ratios. Hence, D is capturing the area distortion
induced by the correspondence.

It follows that if D is the identity, the underlying map is area-preserving.



Discretization: LB basis

Using the Laplacian eigenbases, we get:

From this expression, it follows the useful fact that orthogonal C is 
associated to an area-preserving map.



Conformal inner product

The formulation described in the previous slides does not depend from the 
specific choice of an inner product (the discretization does, though!).

Another commonly used inner product is the so-called conformal inner 
product, which is defined as the inner product of gradients:

Similarly to the previous case, the following equality holds if and only if the 
underlying map T is locally conformal:



Conformal map
A conformal map is a function that 
preserves angles locally (have a look again 
at Lecture 6 – Slide 13).

Very common in computer graphics to work 
with conformal maps. This is mainly due to 
how texture mapping works.



Conformal-based difference
We can define a difference operator based on this inner product, just like 
before:

To distinguish it from the previous area-based definition, we will rename 
this difference operator as             . Once again, this is an operator taking 
functions on      and giving functions on       itself.

To wrap it up, we now have two possible choices to define a shape 
difference, and these are given by choosing different inner products:



Discretization

From the divergence theorem we know:

which means we can discretize the equality on top as:

compare with 
the previous 
case!

Similarly, using the LB basis we get:

previous case



Shape analogies: problem

??



Shape analogies: solution
Assume we are given a collection of shapes, and we wish to find the shapes 
in the collection to fill up the question marks in the previous slide.

??

Suppose we have all the functional maps, 
including                                    . 

Then, we can exhaustively explore the 
whole shape collection, and retain the 
shape S such that:

G is used to transport the differences to a common comparison ground, 
namely the shape C.



Shape analogies: results



Suggested reading
 Map-based exploration of intrinsic shape differences 

and variability. Rustamov et al. TOG 2013.


