Weekly Exercises 10

Room: 02.09.023
Wed, 08.07.2015, 14:15-15:45
Submission deadline: Tue, 07.07.2015, 23:59 to windheus@in.tum.de
Please send in only Latex-PDF. If you have hand-written solutions, please hand them in during the lecture.

Mathematics: The gradient

Exercise 1 (One bonus point). Let S be a regular surface and $f: S \rightarrow \mathbb{R}$ a differentiable function.

1. Show that $d f_{p}: T_{p} S \rightarrow \mathbb{R}$ is linear.

For a given point $p \in S$ find the vector $v \in T_{p} S$ such that...
2. ... an infinitesimal step in the direction of v increases f the most.
3. ... an infinitesimal step in the direction of v does not change the value of f.

Mathematics: Regular surfaces

Exercise 2 (One bonus point). Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a smooth function. We consider its graph

$$
\mathbf{x}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(u, v) \mapsto(u, v, g(u, v))
$$

1. Show that \mathbf{x} is regular and therefore a parametrized surface element.
2. Derive the first fundamental form of \mathbf{x}.
3. In what cases is the parametrization \mathbf{x} orthogonal (conformal, isometric)?

Exercise 3 (One bonus point). Let $g: I \rightarrow \mathbb{R}_{>0}$ be a smooth function. Consider

$$
\mathbf{x}: I \times \mathbb{R} \rightarrow \mathbb{R}^{3},(u, v) \mapsto(u, \cos (v) g(u), \sin (v) g(u))
$$

1. Give an interpretation of \mathbf{x}.
2. Show that \mathbf{x} is regular and derive its first fundamental form.
3. Calculate the area $A\left(\left.\mathbf{x}\right|_{I \times(0,2 \pi)}\right)$.
4. Calculate the surface area of a sphere with radius r.
