Analysis of Three-Dimensional Shapes
E. Rodolà, T. Windheuser, M. Vestner

Summer Semester 2015

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 3

Room: 02.09.023
Wed, 06.05.2015, 14:15-15:45
Submission deadline: Wed, 06.05.2015, 11:59 am to windheus@in.tum.de
Please send in only Latex-PDF. If you have hand-written solutions, please hand them in during the lecture.

Mathematics: Curves in Space

Definition (Curves). Let $I \subset \mathbb{R}$ be an open interval of \mathbb{R}. A curve is a smooth map $\alpha: I \rightarrow \mathbb{R}^{3}$. The curve is regular, if $\alpha^{\prime}(s) \neq \mathbf{0}$ for any $s \in I$. The derivative $\alpha^{\prime}(s)$ with respect to s is called the tangent vector at s or at point $\alpha(s)$.

Definition (Length of Curves). Let $[a, b] \subset I$ be a compact interval and $\alpha: I \rightarrow \mathbb{R}^{3}$ be a regular curve. The length $L_{a}^{b}(\alpha)$ of α from a to b is defined by

$$
\begin{equation*}
L_{a}^{b}(\alpha)=\int_{a}^{b}\left\|\alpha^{\prime}(s)\right\| d s=\int_{a}^{b} \sqrt{\left\langle\alpha^{\prime}(s), \alpha^{\prime}(s)\right\rangle} d s \tag{1}
\end{equation*}
$$

where $\|\cdot\|$ is the usual ℓ_{2}-norm and $\langle\cdot, \cdot\rangle$ the standard inner product of \mathbb{R}^{3}.
Definition (Rigid Motion). A transformation $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called a rigid motion if there exists a matrix $A \in O(n)$ and a vector $b \in \mathbb{R}^{n}$, such that $\phi(x)=A x+b$ for all $x \in \mathbb{R}^{n}$.

Recall that $A \in O(n) \Leftrightarrow A A^{\top}=\operatorname{Id} \Leftrightarrow \operatorname{det} A= \pm 1 \Leftrightarrow \phi$ is an isometry of \mathbb{R}^{n}. Note that by this definition reflections $(\operatorname{det} A=-1)$ are also rigid motions. Other literature might exclude reflections from the set of rigid motions.

Exercise 1 (One point). 1. Let $\alpha:(-4,4) \rightarrow \mathbb{R}^{3}, \alpha(s) \mapsto\left(s, 2 s, s^{2}+1\right)$ be a curve. Show that the curve is regular and compute the tangent vector of α at $s \in(-4,4)$ and the length $L_{-2}^{2}(\alpha)$.
2. Let $\alpha:(-4,4) \rightarrow \mathbb{R}^{3}, \alpha(s) \mapsto\left(s, 2 s, s^{2}+1\right)$ be a regular curve and let γ : $(-2,2) \rightarrow(-4,4), \gamma(s) \mapsto 2 s$ be a function. Show that the curve $\beta=\alpha \circ \gamma$ is regular and compute the tangent vector of β at $s \in(-2,2)$ and the length $L_{-1}^{1}(\beta)$.
3. Let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a regular curve, $[a, b] \subset I$ and let $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a rigid motion. Show that $L_{a}^{b}(\phi \circ \alpha)=L_{a}^{b}(\alpha)$.

Mathematics: Surfaces in Space

Definition (Surface). A non-empty set $\mathcal{X} \subset \mathbb{R}^{3}$ is called a surface if, for each $p \in \mathcal{X}$, there exists an open neighbourhood $N \subset \mathbb{R}^{3}$, an open set $U \subset \mathbb{R}^{2}$ and a differentiable map $x: U \rightarrow V$, where $V=\mathcal{X} \cap N$, such that it holds:

1. $x: U \rightarrow V$ is a homeomorphism and
2. the partial derivatives $x_{u}(q)=\frac{\partial x}{\partial u}(q) \in \mathbb{R}^{3}$ and $x_{v}(q)=\frac{\partial x}{\partial v}(q) \in \mathbb{R}^{3}$ are nonzero and linearly independent for all $q \in U \subset \mathbb{R}^{2}$.

Recall that a homeomorphism $x: U \rightarrow V$ is a continuous and bijective map, such that the inverse x^{-1} is also continuous. The set $\mathcal{T}_{p}(\mathcal{X})=\operatorname{span}\left(x_{u}\left(x^{-1}(p)\right), x_{v}\left(x^{-1}(p)\right)\right)$ is a 2-dimensional subspace of \mathbb{R}^{3} and is called the tangent space of \mathcal{X} at point p.

The individual maps x are called charts or parameterizations and a collection of charts covering \mathcal{X} is sometimes called an atlas.

Exercise 2 (One point). Let $U=(-4,4) \times(-4,4) \subset \mathbb{R}^{2}$ and let $x: U \rightarrow$ $\mathbb{R}^{3}, x\binom{u}{v} \mapsto\left(u, v,(u+v)^{2}+1\right)^{\top}$ be a chart of surface $\mathcal{X}=\operatorname{Im}(x)$.

1. Compute the partial derivatives $x_{u}\binom{u}{v}=\frac{\partial x}{\partial u}\binom{u}{v}, x_{v}\binom{u}{v}=\frac{\partial x}{\partial v}\binom{u}{v}$ for any $\binom{u}{v} \in U$.
2. Compute the differential $(d x)_{\binom{0.5}{1}}\binom{2}{1}$ of x at point $\binom{0.5}{1} \in U$ in direction $\binom{2}{1}$.
