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Surfaces in Space

Definition (Surface). A non-empty set X ⊂ R3 is called a surface if, for each
p ∈ X , there exists an open neighbourhood N ⊂ R3, an open set U ⊂ R2 and a
differentiable map x : U → V , where V = X ∩N , such that it holds:

1. x : U → V is a homeomorphism and

2. the partial derivatives xu(q) = ∂x
∂u

(q) ∈ R3 and xv(q) = ∂x
∂v

(q) ∈ R3 are non-
zero and linearly independent for all q ∈ U ⊂ R2.

Recall that a homeomorphism x : U → V is a continuous and bijective map, such
that the inverse x−1 is also continuous. The set Tp(X ) = span(xu(x

−1(p)), xv(x
−1(p)))

is a 2-dimensional subspace of R3 and is called the tangent space of X at point p.
The individual maps x are called charts or parameterizations and a collection of

charts covering X is sometimes called an atlas.

Exercise 1 (One Point). Let X be a surface and let x : Ux → V ⊂ X be a chart of
X .

1. Let φ : R2 → R2, φ(q) 7→ Aq+b an affine transformation, such that A ∈ R2, b ∈
R2, det(A) 6= 0. Let Uy = φ−1(Ux) and define y : Uy → X , q 7→ x ◦ φ(q). Show
that for any p ∈ V it holds

span(xu(x
−1(p)), xv(x

−1(p))) = span(yu(y
−1(p)), yv(y

−1(p))).

2. Let y : Uy → V ⊂ X be a chart and φ : Ux → Uy be the homeomorphism
between Ux and Uy defined by φ = y−1 ◦ x. Show that if we assume φ is
differentiable it holds for any p ∈ V

span(xu(x
−1(p)), xv(x

−1(p))) = span(yu(y
−1(p)), yv(y

−1(p))).

Solution. 1. Let p ∈ V, q ∈ Uy, such that p = y(q). We can expand yu(q) to

yu(q) =
∂y

∂u
(q) =

∂x ◦ φ
∂u

(q) = Jφ(q)(x)φu(q) =
(
xu(φ(q)), xv(φ(q))

)
φu(q).

1



Analoguously it holds

yv(q) =
(
xu(φ(q)), xv(φ(q))

)
φv(q).

So clearly linear combination ayu(q) + byv(q) ∈ span(xu(φ(q)), xv(φ(q)), a, b ∈
R. By φ(q) = x−1 ◦ y(q) = x−1(p) it holds

ayu(q) + byv(q) ∈ span(xu(x
−1(p)), xv(x

−1(p)).

By the definition of a chart the pairs of derivatives xu, xv and yu, yu are linear
independent, thus the proposition holds.

2. The proof is very similar to the first. Let p ∈ V, q ∈ Ux, such that p = x(q).
Transform φ = y−1 ◦ x into x = y ◦ φ and then expand xu(q) to

xu(q) =
∂x

∂u
(q) =

∂y ◦ φ
∂u

(q) = Jφ(q)(y)φu(q) =
(
yu(φ(q)), yv(φ(q))

)
φu(q).

Analoguously it holds

xv(q) =
(
yu(φ(q)), yv(φ(q))

)
φv(q).

So clearly linear combination axu(q) + bxv(q) ∈ span(yu(φ(q)), yv(φ(q)), a, b ∈
R. By φ(q) = y−1 ◦ x(q) = y−1(p) it holds

axu(q) + bxv(q) ∈ span(yu(y
−1(p)), yv(y

−1(p)).

By the definition of a chart the pairs of derivatives xu, xv and yu, yu are linear
independent, thus the proposition holds.

Remark. Exercise 1 shows that if the composition y−1 ◦ x of charts x, y is differ-
entiable the tangent plane is well defined, i.e. it does not depend on the parameter-
ization. The proposition mentioned in the lecture tells us, that this is the case for
all charts of a surface:

Proposition. Let x : Ux → V ⊂ X , y : Uy → V ⊂ X be two charts of surface X .
The composition y−1 ◦ x is a differentiable function.

The proof is somewhat technical but can be found in any textbook on differential
geometry. Another important observation is that Tx(q)(X ) = span(xu(q), xv(q)) =
Im(dx)x(q), i.e. dx : R2 → Tx(q)(X ) is a linear bijective map between R2 and the
tangent plane Tx(q)(X ).

Definition (Integral on Surfaces). Let X be a surface, let x : U → V ⊂ X be a
chart and let f : X → R be a real valued function. We define the integral of f on
subsurface V with respect to x by∫

V

fdp =

∫
U

f(x(q))
√

det((dx)>q (dx)q)dq.

The area A(V ) of V is defined by setting f(p) = 1 everywhere, i.e. A(V ) =
∫
V

1dp.
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Definition (Differential of Functions on Surfaces). Let X be a surface. The dif-
ferential of some vector-valued function f : X → Rm at point p ∈ X is a function
(df)p : Tp(X )→ Rm defined by

(df)p(w) = (f ◦ α)′(s0), (1)

where α : (s0 − ε, s0 + ε)→ X , s0 ∈ R is any regular curve, such that α(s0) = p and
α′(s0) = w.

Loosely speaking, the differential (df)p(w) is the derivative of f when moving on
the surface at point p in direction w. The domain of (df)p is Tp(X ) since this is the
space of all possible directions at p.

Exercise 2 (One Point). 1. Show that the integral over V ⊂ X is well defined,
i.e. it does not depend on the choice of the chart.

2. Show that the differential of some function f on a surface is well defined, i.e.
it does not depend on the choice of the curve.

3. Show that (df)p : Tp(X )→ Rm is a linear map.

Hint. Recall that the differential df of some function f : Rn → Rm between real-
valued vector spaces is well defined and the chain rule (d(f ◦ g))a = (df)g(a)(dg)a
can be applied. For the second part of the exercise proving (f ◦ α)′(0) = (d(f ◦
x))x−1(p)(dx

−1)pw might be helpful.

Solution. 1. Let x : Ux → V, y : Uy → V, V ⊂ X , be two charts and let
φ : Uy → Ux, φ = x−1 ◦ y. Using integration by substitution it holds∫

V

fdv =

∫
Ux

f(x(q))
√

det((dx)>q (dx)q)dq

=

∫
φ−1(Ux)

f(x ◦ φ(q))
√

det((dx ◦ φ)(q)>(dx ◦ φ)(q)) |det dφ(q)| dq

=

∫
Uy

f ◦ x ◦ φ
√

det((dx ◦ φ)>(dx ◦ φ)) |det dφ| dq.

The second line follows from substituting q by φ(q). The third line follows from
Uy = φ−1(Ux) and removes the argument q for better readability. Observe that
the from the chainrule d(x◦φ) = (dx◦φ)dφ, the invertability of dφ and x◦φ = y
it follows dx ◦ φ = d(x ◦ φ)(dφ)−1 = dy(dφ)−1. It follows∫

V

fdv =

∫
Uy

f ◦ y
√

det((dy(dφ)−1)>dy(dφ)−1) |det dφ| dq

=

∫
Uy

f ◦ y
√

det(dy>dy) det(dφ)−2 |det dφ| dq

=

∫
Uy

f ◦ y
√

det(dy>dy)dq.
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2. Let α, β : (−ε, ε)→ X be two regular curves on surface X with α(0) = β(0) =
p ∈ X and α′(0) = β′(0) = w. We need to show that for any f : X → Rm

and any w ∈ Tp(X ) it holds (f ◦ α)′(0) = (f ◦ β)′(0). (If we could apply
the chain rule here, the proof would be simple. But the chain rule needs a
proper definition of the differential df of f , which we are just about to proof.)
Consider a chart x : U → V , such that Im(α)∪ Im(β) ⊂ V . Now we can apply
the chain rule with a simple trick:

(f ◦ α)′(0) = (f ◦ x ◦ x−1 ◦ α)′(0)

= ((f ◦ x) ◦ (x−1 ◦ α))′(0)

= (d(f ◦ x))x−1◦α(0)(x
−1 ◦ α)′(0)

= (d(f ◦ x))x−1(α(0))(dxx−1(α(0)))
−1α′(0)

= (d(f ◦ x))x−1(p)(dxx−1(p))
−1w.

Doing this analoguously for β leads to (f ◦ α)′(0) = (f ◦ β)′(0).

3. We have shown that (df)p(w) = (d(f ◦ x))x−1(p)(dxx−1(p))
−1w. Since both

functions f ◦x, x−1 map from vector spaces to vector spaces, their differentials
(d(f ◦ x)), (dx)−1 are linear maps between the corresponding tangent spaces.
Thus (df) is also a linear map.

Exercise 3 (One Point). 1. Compute the following integral:∫ 1

0

∫ 1−u

0

a(1− u− v) + bu+ cv dvdu.

2. Let a, b, c ∈ R3 be the corners of some triangle T , such that T ⊂ X is part of
surface X . Consider two functions f, g : X → R that are linear on T and take
values f(a), g(b) ∈ R, f(b) = f(c) = g(a) = g(c) = 0 at it’s corners. Compute
the integral on the interior int(T ) of T :∫

int(T )

f(t)g(t)dt.
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