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Surfaces in Space

Definition (Surface). A non-empty set X C R3 is called a surface if, for each
p € X, there exists an open neighbourhood N C R3, an open set U C R? and a
differentiable map © : U — V', where V.= X N N, such that it holds:

1. x:U — V is a homeomorphism and

2. the partial derivatives z,(q) = 9%(q) € R® and z,(q) =

zero and linearly independent for all ¢ € U C R2.

oz

%(q) € R* are non-

Recall that a homeomorphism x : U — V' is a continuous and bijective map, such
that the inverse 2~ is also continuous. The set 7,(X) = span(x,(z~(p)), z.,(x "1 (p)))
is a 2-dimensional subspace of R? and is called the tangent space of X at point p.

The individual maps = are called charts or parameterizations and a collection of
charts covering X is sometimes called an atlas.

Exercise 1 (One Point). Let X be a surface and let x : U, — V C X be a chart of
X.

1. Let ¢ : R? — R2 ¢(q) — Aq+b an affine transformation, such that A € R?,b €
R? det(A) # 0. Let U, = ¢~ (U,) and define y : U, — X,q+ x 0 ¢(q). Show
that for any p € V it holds

span(, (1 (p)), T (7 (p))) = span(y.(y~" (), yo (¥~ (p))).

2. Lety : Uy, —V C X be a chart and ¢ : U, — U, be the homeomorphism
between U, and U, defined by ¢ = y~* ox. Show that if we assume ¢ is
differentiable it holds for any p € V

span(z, (1 (p)), To(x () = span(y.(y~" (), yo (¥~ (p))).

Solution. 1. Let p € V,q € Uy, such that p = y(¢). We can expand y,(q) to

1u(0) = 22 (0) = 2220 (g) = Ty (#)onl) = (u(6(@)), 7(6(0)) (o).




Analoguously it holds

yo(q) = (2u(0(q)), 2u(0(q))) du(q).

So clearly linear combination ay,(q) + by,(q) € span(z,(d(q)), z,(¢(q)), a,b €
R. By ¢(q) = 271 oy(q) = z7!(p) it holds

ayu(q) + by (q) € span(z, (7 (p)), z. (" (p)).

By the definition of a chart the pairs of derivatives z,,, z, and y,, 3, are linear
independent, thus the proposition holds.

2. The proof is very similar to the first. Let p € V,q € U,, such that p = z(q).
Transform ¢ =y~ oz into 2 = y o ¢ and then expand z,(q) to

rula) = 2200 = 2222 g) = Ty ()nla) = (l0(0)),50(0(0))) ula)

Analoguously it holds

25(q) = (Yu(0(a)), 45(6(q))) Pu(q)-

So clearly linear combination aw,(q) + bz, (q) € span(y.(#(q)), y»(6(q)),a,b €
R. By ¢(q) =y ' ox(q) =y '(p) it holds

az(q) + bxy(q) € span(yu(y~"' (p)), o (y ™" (p)).

By the definition of a chart the pairs of derivatives z,,, z, and y,, 3, are linear
independent, thus the proposition holds.

Remark. Exercise 1 shows that if the composition y~! o x of charts x,y is differ-
entiable the tangent plane is well defined, i.e. it does not depend on the parameter-
ization. The proposition mentioned in the lecture tells us, that this is the case for
all charts of a surface:

Proposition. Letx : U, -V C X,y : U, =V C X be two charts of surface X.
The composition y~' o x is a differentiable function.

The proof is somewhat technical but can be found in any textbook on differential
geometry. Another important observation is that T, (X) = span(x,(q), z.,(q)) =
Im(dz) ), 1e. dz : R* — Ty(X) is a linear bijective map between R? and the
tangent plane T (X).

Definition (Integral on Surfaces). Let X' be a surface, let x : U — V C X be a
chart and let f : X — R be a real valued function. We define the integral of f on
subsurface V' with respect to x by

[ #a= [ steta)faet((a@a); (@) )aa

The area A(V) of V is defined by setting f(p) = 1 everywhere, i.e. A(V) = [, Ldp.




Definition (Differential of Functions on Surfaces). Let X be a surface. The dif-
ferential of some vector-valued function f : X — R™ at point p € X is a function
(df)p : To(X) — R™ defined by

(df)p(w) = (f o) (s0), (1)

where «: (sg — €, 80+ €) — X, 59 € R is any reqular curve, such that a(sy) = p and
a/(sg) = w.
Loosely speaking, the differential (df),(w) is the derivative of f when moving on

the surface at point p in direction w. The domain of (df), is T,(X) since this is the
space of all possible directions at p.

Exercise 2 (One Point). 1. Show that the integral over V. C X is well defined,
i.e. 1t does not depend on the choice of the chart.

2. Show that the differential of some function f on a surface is well defined, i.e.
it does not depend on the choice of the curve.

3. Show that (df), : T,(X) — R™ is a linear map.

Hint. Recall that the differential df of some function f : R® — R™ between real-
valued vector spaces is well defined and the chain rule (d(f © ¢))a = (df)g()(dg)a
can be applied. For the second part of the exercise proving (f o a)'(0) = (d(f o
))z-1(p) (dz™1),w might be helpful.

Solution. 1.Let 2 : U, — V,y : U, — V,V C X, be two charts and let
¢:U, = U, ¢ =a"" oy. Using integration by substitution it holds

/ Fdv = Uxf \/det ((dz)] (dx),)dg
‘/¢ o, {0 BV o 6T ) et dole)] dy

[ 100 0/det((dr o 6)T(dr o 6))ldet o] da.

The second line follows from substituting g by ¢(¢). The third line follows from
U, = ¢ }(U,) and removes the argument ¢ for better readability. Observe that
the from the chainrule d(zo¢) = (dzog)dp, the invertability of dp and xo¢ =y
it follows dz o ¢ = d(z o ¢)(de) ™! = dy(d¢)~'. Tt follows

/V o = [ o y/Aetl{dy(d) ) T dy(dd) ) ldet o] dg

foyy/det(dyTdy) det(de)=2 |det dp| dq

Uy

det(dy " dy)dg.
U,



2. Let a, 5 : (—€,€) — & be two regular curves on surface X with a(0) = 4(0) =
p € X and /(0) = f'(0) = w. We need to show that for any f : X — R™
and any w € T,(X) it holds (f o a)'(0) = (f o 8)'(0). (If we could apply
the chain rule here, the proof would be simple. But the chain rule needs a
proper definition of the differential df of f, which we are just about to proof.)
Consider a chart = : U — V, such that Im(a) UIm(5) C V. Now we can apply
the chain rule with a simple trick:

(foxoxz™'oa)(0)

((fox)o (517 a))'(o)

= (d(f © %))p-10a(0) (z ™" 0 )'(0)

= (d(f © 7))z-1(a(0)) (d%—l(a( p) " (0)
= (d(fo x))xfl(p)(dzfl(p))_lw'

Doing this analoguously for 3 leads to (f o «)'(0) = (f o 5)'(0).

3. We have shown that (df),(w) = (d(f o x)),—1(p)(d2s—1(y)) 'w. Since both
functions fox,z~! map from vector spaces to vector spaces, their differentials
(d(f o)), (dx)™! are linear maps between the corresponding tangent spaces.
Thus (df) is also a linear map.

Exercise 3 (One Point). 1. Compute the following integral:

1-u
// a(l —u—v)+bu+ cv dvdu.

2. Let a,b,c € R? be the corners of some triangle T, such that T C X is part of
surface X. Consider two functions f,g: X — R that are linear on T and take
values f(a),g(b) € R, f(b) = f(c) = g(a) = g(c) =0 at it’s corners. Compute
the integral on the interior int(T) of T':

[ s
int(T)



