Analysis of Three-Dimensional Shapes Computer Vision Group E. Rodolà, T. Windheuser, M. Vestner Institut für Informatik Summer Semester 2015 Technische Universität München

Weekly Exercises 3

Room: 02.09.023 Wed, 06.05.2015, 14:15-15:45 Submission deadline: Wed, 06.05.2015, 11:59 am to windheus@in.tum.de Please send in only Latex-PDF. If you have hand-written solutions, please hand them in during the lecture.

Mathematics: Curves in Space

Definition (Curves). Let $I \subset \mathbb{R}$ be an open interval of \mathbb{R} . A *curve* is a smooth map $\alpha: I \to \mathbb{R}^3$. The curve is regular, if $\alpha'(s) \neq \mathbf{0}$ for any $s \in I$. The derivative $\alpha'(s)$ with respect to s is called the *tangent vector* at s or at point $\alpha(s)$.

Definition (Length of Curves). Let $[a, b] \subset I$ be a compact interval and $\alpha : I \to \mathbb{R}^3$ be a regular curve. The *length* $L_a^b(\alpha)$ of α from a to b is defined by

$$
L_a^b(\alpha) = \int_a^b \|\alpha'(s)\| \, ds = \int_a^b \sqrt{\langle \alpha'(s), \alpha'(s) \rangle} ds, \tag{1}
$$

where $\|\cdot\|$ is the usual ℓ_2 -norm and $\langle \cdot, \cdot \rangle$ the standard inner product of \mathbb{R}^3 .

Definition (Rigid Motion). A transformation $\phi : \mathbb{R}^n \to \mathbb{R}^n$ is called a *rigid motion* if there exists a matrix $A \in O(n)$ and a vector $b \in \mathbb{R}^n$, such that $\phi(x) = Ax + b$ for all $x \in \mathbb{R}^n$.

Recall that $A \in O(n) \Leftrightarrow AA^{\top} = \text{Id} \Leftrightarrow \det A = \pm 1 \Leftrightarrow \phi$ is an isometry of \mathbb{R}^n . Note that by this definition reflections (det $A = -1$) are also rigid motions. Other literature might exclude reflections from the set of rigid motions.

- **Exercise 1** (One point). 1. Let $\alpha: (-4, 4) \rightarrow \mathbb{R}^3$, $s \mapsto (s, 2s, s^2 + 1)$ be a curve. Show that the curve is regular and compute the tangent vector of α at $s \in \mathbb{R}$ $(-4, 4)$ and the length $L_{-2}^{2}(\alpha)$.
	- 2. Let $\alpha: (-4,4) \to \mathbb{R}^3$, $s \mapsto (s, 2s, s^2+1)$ be a regular curve and let $\gamma: (-2, 2) \to$ $(-4, 4)$, $s \mapsto 2s$ be a function. Show that the curve $\beta = \alpha \circ \gamma$ is regular and compute the tangent vector of β at $s \in (-2, 2)$ and the length $L_{-1}^1(\beta)$.
	- 3. Let $\alpha: I \to \mathbb{R}^3$ be a regular curve, $[a, b] \subset I$ and let $\phi: \mathbb{R}^3 \to \mathbb{R}^3$ be a rigid motion. Show that $L_a^b(\phi \circ \alpha) = L_a^b(\alpha)$.

Solution. 1. The tangent vector is $\alpha'(s) = (1, 2, 2s)$ for any $s \in (-4, 4)$. It will never be zero, hence α is regular.

$$
L_{-2}^{2}(\alpha) = \int_{-2}^{2} \sqrt{\langle \alpha'(s), \alpha'(s) \rangle} ds
$$

=
$$
\int_{-2}^{2} \sqrt{5 + 4s^{2}} ds
$$

=
$$
2 \int_{-2}^{2} \sqrt{\frac{5}{4} + s^{2}} ds.
$$

Now we look up

$$
\int \sqrt{a^2 + t^2} dt = \frac{1}{2} (t\sqrt{a^2 + t^2} + a^2 \ln(t + \sqrt{a^2 + t^2}))
$$

and get

$$
L_{-2}^{2}(\alpha) = \left[t\sqrt{\frac{5}{4} + t^{2}} + \frac{5}{4}\ln(t + \sqrt{\frac{5}{4} + t^{2}})\right]_{-2}^{2}
$$

= $((2\sqrt{\frac{5}{4} + 4} + \frac{5}{4}\ln(2 + \sqrt{\frac{5}{4} + 4})) - (-2\sqrt{\frac{5}{4} + 4} + \frac{5}{4}\ln(-2 + \sqrt{\frac{5}{4} + 4})))$
= $((\sqrt{21} + \frac{5}{4}\ln(2 + \sqrt{\frac{21}{4}})) - (-\sqrt{21} + \frac{5}{4}\ln(-2 + \sqrt{\frac{21}{4}})))$
= 12.5277

2. Since $\beta(s) = \alpha \circ \gamma(s) = (2s, 4s, 4s^2 + 1)$ the tangent vector is $\beta'(s) = (2, 4, 8s) \neq$ **0** and hence β regular.

$$
L_{-1}^{1}(\beta) = \int_{-1}^{1} \sqrt{\langle \beta'(s), \beta'(s) \rangle} ds
$$

=
$$
\int_{-1}^{1} \sqrt{20 + 64s^{2}} ds = 8 \int_{-1}^{1} \sqrt{\frac{5}{16} + s^{2}} ds.
$$

Again using

$$
\int \sqrt{a^2 + t^2} dt = \frac{1}{2} (t\sqrt{a^2 + t^2} + a^2 \ln(t + \sqrt{a^2 + t^2}))
$$

we get

$$
L_{-1}^{1}(\alpha) = 4\left[t\sqrt{\frac{5}{16} + t^2} + \frac{5}{16}\ln(t + \sqrt{\frac{5}{16} + t^2})\right]_{-1}^{1}
$$

= $\left[4\sqrt{\frac{5}{16} + 1} + \frac{5}{4}\ln(1 + \sqrt{\frac{5}{16} + 1})\right] - \left[-4\sqrt{\frac{5}{16} + 1} + \frac{5}{4}\ln(-1 + \sqrt{\frac{5}{16} + 1})\right]$
= $((\sqrt{21} + \frac{5}{4}\ln(1 + \sqrt{\frac{21}{16}})) - (-\sqrt{21} + \frac{5}{4}\ln(-1 + \sqrt{\frac{21}{16}})))$
= 12.5277.

3. Since ϕ is a rigid motion, we can assume there exists some $A \in \mathbb{R}^{3 \times 3}, b \in$ \mathbb{R}^3 , $A^{\top}A = \text{Id}$, such that $\phi(x) = Ax + b$. The Jacobian \mathcal{J}_{ϕ} of ϕ is $\mathcal{J}_{\phi}(x) = A$ at any point $x \in \mathbb{R}^3$ and derivative of $\phi \circ \alpha$ is

$$
(\phi \circ \alpha)'(s) = \mathcal{J}_{\phi}(\alpha(s))\alpha'(s)
$$

= $A\alpha'(s)$.

The proof is completed by expanding the definition of length $L_a^b(\phi \circ \alpha)$:

$$
L_a^b(\phi \circ \alpha) = \int_a^b \sqrt{\langle (\phi \circ \alpha)'(s), (\phi \circ \alpha)'(s) \rangle}
$$

=
$$
\int_a^b \sqrt{\langle A\alpha'(s), A\alpha'(s) \rangle}
$$

=
$$
\int_a^b \sqrt{\langle A^\top A\alpha'(s), \alpha'(s) \rangle}
$$

=
$$
\int_a^b \sqrt{\langle \alpha'(s), \alpha'(s) \rangle}
$$

=
$$
L_a^b(\alpha).
$$

Mathematics: Surfaces in Space

Definition (Surface). A non-empty set $\mathcal{X} \subset \mathbb{R}^3$ is called a *surface* if, for each $p \in \mathcal{X}$, there exists an open neighbourhood $N \subset \mathbb{R}^3$, an open set $U \subset \mathbb{R}^2$ and a differentiable map $x: U \to V$, where $V = \mathcal{X} \cap N$, such that it holds:

- 1. $x: U \to V$ is a homeomorphism and
- 2. the partial derivatives $x_u(q) = \frac{\partial x}{\partial u}(q) \in \mathbb{R}^3$ and $x_v(q) = \frac{\partial x}{\partial v}(q) \in \mathbb{R}^3$ are non-zero and linearly independent for all $q \in U \subset \mathbb{R}^2$.

Recall that a homeomorphism $x: U \to V$ is a continuous and bijective map, such that the inverse x^{-1} is also continuous. The set $\mathcal{T}_p(\mathcal{X}) = \text{span}(x_u(x^{-1}(p)), x_v(x^{-1}(p)))$ is a 2-dimensional subspace of \mathbb{R}^3 and is called the *tangent space* of \mathcal{X} at point p.

The individual maps x are called *charts* or *parameterizations* and a collection of charts covering $\mathcal X$ is sometimes called an *atlas*.

Exercise 2 (One point). Let $U = (-4, 4) \times (-4, 4) \subset \mathbb{R}^2$ and let $x: U \to \mathbb{R}^3$, $\begin{pmatrix} u \\ v \end{pmatrix} \mapsto$ $(u, v, (u + v)^2 + 1)^\top$ be a chart of surface $\mathcal{X} = \text{Im}(x)$.

- 1. Compute the partial derivatives $x_u\begin{pmatrix} u \\ v \end{pmatrix} = \frac{\partial x}{\partial u}\begin{pmatrix} u \\ v \end{pmatrix}$, $x_v\begin{pmatrix} u \\ v \end{pmatrix} = \frac{\partial x}{\partial v}\begin{pmatrix} u \\ v \end{pmatrix}$ for any $\left(\begin{smallmatrix} u \\ v \end{smallmatrix}\right) \in U.$
- 2. Compute the differential $(dx)_{\binom{0.5}{1}}\binom{2}{1}$ of x at point $\binom{0.5}{1} \in U$ in direction $\left(\begin{matrix}2\\1\end{matrix}\right)$.

Solution. 1. The derivatives are

$$
x_u(\begin{matrix} u \\ v \end{matrix}) = (1, 0, 2u + 2v)^{\top}
$$
 and $x_u(\begin{matrix} u \\ v \end{matrix}) = (0, 1, 2u + 2v)^{\top}$.

2. The differential is

$$
(dx)_{\left(\begin{smallmatrix}0.5\\1\end{smallmatrix}\right)}\left(\begin{smallmatrix}2\\1\end{smallmatrix}\right)=(x_u\left(\begin{smallmatrix}0.5\\1\end{smallmatrix}\right),x_v\left(\begin{smallmatrix}0.5\\1\end{smallmatrix}\right))\left(\begin{smallmatrix}2\\1\end{smallmatrix}\right)=\left(\begin{smallmatrix}1&0\\0&1\\3&3\end{smallmatrix}\right)\left(\begin{smallmatrix}2\\1\end{smallmatrix}\right)=\left(\begin{smallmatrix}2\\1\\9\end{smallmatrix}\right).
$$