Analysis of Three-Dimensional Shapes E. Rodolà, T. Windheuser, M. Vestner Summer Semester 2015 Computer Vision Group Institut für Informatik Technische Universität München

Weekly Exercises 3

Room: 02.09.023 Wed, 06.05.2015, 14:15-15:45 Submission deadline: Wed, 06.05.2015, 11:59 am to windheus@in.tum.de Please send in only Latex-PDF. If you have hand-written solutions, please hand them in during the lecture.

Mathematics: Curves in Space

Definition (Curves). Let $I \subset \mathbb{R}$ be an open interval of \mathbb{R} . A *curve* is a smooth map $\alpha : I \to \mathbb{R}^3$. The curve is *regular*, if $\alpha'(s) \neq \mathbf{0}$ for any $s \in I$. The derivative $\alpha'(s)$ with respect to s is called the *tangent vector* at s or at point $\alpha(s)$.

Definition (Length of Curves). Let $[a, b] \subset I$ be a compact interval and $\alpha : I \to \mathbb{R}^3$ be a regular curve. The *length* $L^b_a(\alpha)$ of α from a to b is defined by

$$L_a^b(\alpha) = \int_a^b \|\alpha'(s)\| \, ds = \int_a^b \sqrt{\langle \alpha'(s), \alpha'(s) \rangle} \, ds, \tag{1}$$

where $\|\cdot\|$ is the usual ℓ_2 -norm and $\langle \cdot, \cdot \rangle$ the standard inner product of \mathbb{R}^3 .

Definition (Rigid Motion). A transformation $\phi : \mathbb{R}^n \to \mathbb{R}^n$ is called a *rigid motion* if there exists a matrix $A \in O(n)$ and a vector $b \in \mathbb{R}^n$, such that $\phi(x) = Ax + b$ for all $x \in \mathbb{R}^n$.

Recall that $A \in O(n) \Leftrightarrow AA^{\top} = \text{Id} \Leftrightarrow \det A = \pm 1 \Leftrightarrow \phi$ is an isometry of \mathbb{R}^n . Note that by this definition reflections (detA = -1) are also rigid motions. Other literature might exclude reflections from the set of rigid motions.

- **Exercise 1** (One point). 1. Let $\alpha : (-4, 4) \to \mathbb{R}^3$, $s \mapsto (s, 2s, s^2 + 1)$ be a curve. Show that the curve is regular and compute the tangent vector of α at $s \in (-4, 4)$ and the length $L^2_{-2}(\alpha)$.
 - 2. Let $\alpha : (-4, 4) \to \mathbb{R}^3$, $s \mapsto (s, 2s, s^2+1)$ be a regular curve and let $\gamma : (-2, 2) \to (-4, 4), s \mapsto 2s$ be a function. Show that the curve $\beta = \alpha \circ \gamma$ is regular and compute the tangent vector of β at $s \in (-2, 2)$ and the length $L^1_{-1}(\beta)$.
 - 3. Let $\alpha : I \to \mathbb{R}^3$ be a regular curve, $[a, b] \subset I$ and let $\phi : \mathbb{R}^3 \to \mathbb{R}^3$ be a rigid motion. Show that $L^b_a(\phi \circ \alpha) = L^b_a(\alpha)$.

Solution. 1. The tangent vector is $\alpha'(s) = (1, 2, 2s)$ for any $s \in (-4, 4)$. It will never be zero, hence α is regular.

$$\begin{split} L^2_{-2}(\alpha) &= \int_{-2}^2 \sqrt{\langle \alpha'(s), \alpha'(s) \rangle} ds \\ &= \int_{-2}^2 \sqrt{5 + 4s^2} ds \\ &= 2 \int_{-2}^2 \sqrt{\frac{5}{4} + s^2} ds. \end{split}$$

Now we look up

$$\int \sqrt{a^2 + t^2} dt = \frac{1}{2} (t\sqrt{a^2 + t^2} + a^2 \ln(t + \sqrt{a^2 + t^2}))$$

and get

$$\begin{split} L^2_{-2}(\alpha) &= \left[t \sqrt{\frac{5}{4} + t^2} + \frac{5}{4} \ln(t + \sqrt{\frac{5}{4} + t^2}) \right]_{-2}^2 \\ &= \left((2\sqrt{\frac{5}{4} + 4} + \frac{5}{4} \ln(2 + \sqrt{\frac{5}{4} + 4})) - (-2\sqrt{\frac{5}{4} + 4} + \frac{5}{4} \ln(-2 + \sqrt{\frac{5}{4} + 4})) \right) \\ &= \left((\sqrt{21} + \frac{5}{4} \ln(2 + \sqrt{\frac{21}{4}})) - (-\sqrt{21} + \frac{5}{4} \ln(-2 + \sqrt{\frac{21}{4}})) \right) \\ &= 12.5277 \end{split}$$

2. Since $\beta(s) = \alpha \circ \gamma(s) = (2s, 4s, 4s^2+1)$ the tangent vector is $\beta'(s) = (2, 4, 8s) \neq \mathbf{0}$ and hence β regular.

$$L_{-1}^{1}(\beta) = \int_{-1}^{1} \sqrt{\langle \beta'(s), \beta'(s) \rangle} ds$$
$$= \int_{-1}^{1} \sqrt{20 + 64s^2} ds = 8 \int_{-1}^{1} \sqrt{\frac{5}{16} + s^2} ds.$$

Again using

$$\int \sqrt{a^2 + t^2} dt = \frac{1}{2} (t\sqrt{a^2 + t^2} + a^2 \ln(t + \sqrt{a^2 + t^2}))$$

we get

$$\begin{split} L_{-1}^{1}(\alpha) &= 4 \left[t \sqrt{\frac{5}{16} + t^2} + \frac{5}{16} \ln(t + \sqrt{\frac{5}{16} + t^2}) \right]_{-1}^{1} \\ &= \left[4 \sqrt{\frac{5}{16} + 1} + \frac{5}{4} \ln(1 + \sqrt{\frac{5}{16} + 1}) \right] - \left[-4 \sqrt{\frac{5}{16} + 1} + \frac{5}{4} \ln(-1 + \sqrt{\frac{5}{16} + 1}) \right] \\ &= \left((\sqrt{21} + \frac{5}{4} \ln(1 + \sqrt{\frac{21}{16}})) - (-\sqrt{21} + \frac{5}{4} \ln(-1 + \sqrt{\frac{21}{16}})) \right) \\ &= 12.5277. \end{split}$$

3. Since ϕ is a rigid motion, we can assume there exists some $A \in \mathbb{R}^{3\times 3}, b \in \mathbb{R}^3, A^{\top}A = \text{Id}$, such that $\phi(x) = Ax + b$. The Jacobian \mathcal{J}_{ϕ} of ϕ is $\mathcal{J}_{\phi}(x) = A$ at any point $x \in \mathbb{R}^3$ and derivative of $\phi \circ \alpha$ is

$$(\phi \circ \alpha)'(s) = \mathcal{J}_{\phi}(\alpha(s))\alpha'(s)$$
$$= A\alpha'(s).$$

The proof is completed by expanding the definition of length $L_a^b(\phi \circ \alpha)$:

$$\begin{split} L^b_a(\phi \circ \alpha) &= \int_a^b \sqrt{\langle (\phi \circ \alpha)'(s), (\phi \circ \alpha)'(s) \rangle} \\ &= \int_a^b \sqrt{\langle A\alpha'(s), A\alpha'(s) \rangle} \\ &= \int_a^b \sqrt{\langle A^\top A\alpha'(s), \alpha'(s) \rangle} \\ &= \int_a^b \sqrt{\langle \alpha'(s), \alpha'(s) \rangle} \\ &= L^b_a(\alpha). \end{split}$$

Mathematics: Surfaces in Space

Definition (Surface). A non-empty set $\mathcal{X} \subset \mathbb{R}^3$ is called a *surface* if, for each $p \in \mathcal{X}$, there exists an open neighbourhood $N \subset \mathbb{R}^3$, an open set $U \subset \mathbb{R}^2$ and a differentiable map $x : U \to V$, where $V = \mathcal{X} \cap N$, such that it holds:

- 1. $x: U \to V$ is a homeomorphism and
- 2. the partial derivatives $x_u(q) = \frac{\partial x}{\partial u}(q) \in \mathbb{R}^3$ and $x_v(q) = \frac{\partial x}{\partial v}(q) \in \mathbb{R}^3$ are non-zero and linearly independent for all $q \in U \subset \mathbb{R}^2$.

Recall that a homeomorphism $x : U \to V$ is a continuous and bijective map, such that the inverse x^{-1} is also continuous. The set $\mathcal{T}_p(\mathcal{X}) = \operatorname{span}(x_u(x^{-1}(p)), x_v(x^{-1}(p)))$ is a 2-dimensional subspace of \mathbb{R}^3 and is called the *tangent space* of \mathcal{X} at point p.

The individual maps x are called *charts* or *parameterizations* and a collection of charts covering \mathcal{X} is sometimes called an *atlas*.

Exercise 2 (One point). Let $U = (-4, 4) \times (-4, 4) \subset \mathbb{R}^2$ and let $x : U \to \mathbb{R}^3$, $\begin{pmatrix} u \\ v \end{pmatrix} \mapsto (u, v, (u+v)^2 + 1)^\top$ be a chart of surface $\mathcal{X} = \operatorname{Im}(x)$.

- 1. Compute the partial derivatives $x_u\begin{pmatrix} u\\v \end{pmatrix} = \frac{\partial x}{\partial u}\begin{pmatrix} u\\v \end{pmatrix}, x_v\begin{pmatrix} u\\v \end{pmatrix} = \frac{\partial x}{\partial v}\begin{pmatrix} u\\v \end{pmatrix}$ for any $\begin{pmatrix} u\\v \end{pmatrix} \in U$.
- 2. Compute the differential $(dx)_{\begin{pmatrix} 0,5\\1 \end{pmatrix}} \begin{pmatrix} 2\\1 \end{pmatrix}$ of x at point $\begin{pmatrix} 0,5\\1 \end{pmatrix} \in U$ in direction $\begin{pmatrix} 2\\1 \end{pmatrix}$.

Solution. 1. The derivatives are

$$x_u \begin{pmatrix} u \\ v \end{pmatrix} = (1, 0, 2u + 2v)^\top$$
 and $x_u \begin{pmatrix} u \\ v \end{pmatrix} = (0, 1, 2u + 2v)^\top$.

2. The differential is

$$(dx)_{\binom{0.5}{1}}\binom{2}{1} = (x_u\binom{0.5}{1}, x_v\binom{0.5}{1})\binom{2}{1} = \binom{1}{0}\binom{0}{1}\binom{2}{1} = \binom{2}{1}.$$