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Mathematics: Curves in Space

Definition (Curves). Let I ⊂ R be an open interval of R. A curve is a smooth
map α : I → R3. The curve is regular, if α′(s) 6= 0 for any s ∈ I. The derivative
α′(s) with respect to s is called the tangent vector at s or at point α(s).

Definition (Length of Curves). Let [a, b] ⊂ I be a compact interval and α : I → R3

be a regular curve. The length Lba(α) of α from a to b is defined by

Lba(α) =

∫ b

a

‖α′(s)‖ ds =

∫ b

a

√
〈α′(s), α′(s)〉ds, (1)

where ‖·‖ is the usual `2-norm and 〈·, ·〉 the standard inner product of R3.

Definition (Rigid Motion). A transformation φ : Rn → Rn is called a rigid motion
if there exists a matrix A ∈ O(n) and a vector b ∈ Rn, such that φ(x) = Ax+ b for
all x ∈ Rn.

Recall that A ∈ O(n) ⇔ AA> = Id ⇔ detA = ±1 ⇔ φ is an isometry of Rn.
Note that by this definition reflections (detA = −1) are also rigid motions. Other
literature might exclude reflections from the set of rigid motions.

Exercise 1 (One point). 1. Let α : (−4, 4)→ R3, s 7→ (s, 2s, s2 + 1) be a curve.
Show that the curve is regular and compute the tangent vector of α at s ∈
(−4, 4) and the length L2

−2(α).

2. Let α : (−4, 4)→ R3, s 7→ (s, 2s, s2+1) be a regular curve and let γ : (−2, 2)→
(−4, 4), s 7→ 2s be a function. Show that the curve β = α ◦ γ is regular and
compute the tangent vector of β at s ∈ (−2, 2) and the length L1

−1(β).

3. Let α : I → R3 be a regular curve, [a, b] ⊂ I and let φ : R3 → R3 be a rigid
motion. Show that Lba(φ ◦ α) = Lba(α).
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Solution. 1. The tangent vector is α′(s) = (1, 2, 2s) for any s ∈ (−4, 4). It will
never be zero, hence α is regular.

L2
−2(α) =

∫ 2

−2

√
〈α′(s), α′(s)〉ds

=

∫ 2

−2

√
5 + 4s2ds

= 2

∫ 2

−2

√
5

4
+ s2ds.

Now we look up∫ √
a2 + t2dt =

1

2
(t
√
a2 + t2 + a2 ln(t+

√
a2 + t2))

and get

L2
−2(α) =

[
t

√
5

4
+ t2 +

5

4
ln(t+

√
5

4
+ t2)

]2
−2

= ((2

√
5

4
+ 4 +

5

4
ln(2 +

√
5

4
+ 4))− (−2

√
5

4
+ 4 +

5

4
ln(−2 +

√
5

4
+ 4)))

= ((
√

21 +
5

4
ln(2 +

√
21

4
))− (−

√
21 +

5

4
ln(−2 +

√
21

4
)))

= 12.5277

2. Since β(s) = α◦γ(s) = (2s, 4s, 4s2+1) the tangent vector is β′(s) = (2, 4, 8s) 6=
0 and hence β regular.

L1
−1(β) =

∫ 1

−1

√
〈β′(s), β′(s)〉ds

=

∫ 1

−1

√
20 + 64s2ds = 8

∫ 1

−1

√
5

16
+ s2ds.

Again using ∫ √
a2 + t2dt =

1

2
(t
√
a2 + t2 + a2 ln(t+

√
a2 + t2))

we get

L1
−1(α) = 4

[
t

√
5

16
+ t2 +

5

16
ln(t+

√
5

16
+ t2)

]1
−1

=
[
4

√
5

16
+ 1 +

5

4
ln(1 +

√
5

16
+ 1)

]
−
[
− 4

√
5

16
+ 1 +

5

4
ln(−1 +

√
5

16
+ 1)

]
= ((
√

21 +
5

4
ln(1 +

√
21

16
))− (−

√
21 +

5

4
ln(−1 +

√
21

16
)))

= 12.5277.
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3. Since φ is a rigid motion, we can assume there exists some A ∈ R3×3, b ∈
R3, A>A = Id, such that φ(x) = Ax + b. The Jacobian Jφ of φ is Jφ(x) = A
at any point x ∈ R3 and derivative of φ ◦ α is

(φ ◦ α)′(s) = Jφ(α(s))α′(s)

= Aα′(s).

The proof is completed by expanding the definition of length Lba(φ ◦ α):

Lba(φ ◦ α) =

∫ b

a

√
〈(φ ◦ α)′(s), (φ ◦ α)′(s)〉

=

∫ b

a

√
〈Aα′(s), Aα′(s)〉

=

∫ b

a

√
〈A>Aα′(s), α′(s)〉

=

∫ b

a

√
〈α′(s), α′(s)〉

= Lba(α).

Mathematics: Surfaces in Space

Definition (Surface). A non-empty set X ⊂ R3 is called a surface if, for each
p ∈ X , there exists an open neighbourhood N ⊂ R3, an open set U ⊂ R2 and a
differentiable map x : U → V , where V = X ∩N , such that it holds:

1. x : U → V is a homeomorphism and

2. the partial derivatives xu(q) = ∂x
∂u

(q) ∈ R3 and xv(q) = ∂x
∂v

(q) ∈ R3 are non-zero
and linearly independent for all q ∈ U ⊂ R2.

Recall that a homeomorphism x : U → V is a continuous and bijective map, such
that the inverse x−1 is also continuous. The set Tp(X ) = span(xu(x

−1(p)), xv(x
−1(p)))

is a 2-dimensional subspace of R3 and is called the tangent space of X at point p.
The individual maps x are called charts or parameterizations and a collection of

charts covering X is sometimes called an atlas.

Exercise 2 (One point). Let U = (−4, 4)×(−4, 4) ⊂ R2 and let x : U → R3,
(
u
v

)
7→

(u, v, (u+ v)2 + 1)> be a chart of surface X = Im(x).

1. Compute the partial derivatives xu
(
u
v

)
= ∂x

∂u

(
u
v

)
, xv
(
u
v

)
= ∂x

∂v

(
u
v

)
for any(

u
v

)
∈ U .

2. Compute the differential (dx)( 0.5
1

)( 2
1

)
of x at point

(
0.5
1

)
∈ U in direction(

2
1

)
.
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Solution. 1. The derivatives are

xu
(
u
v

)
= (1, 0, 2u+ 2v)> and xu

(
u
v

)
= (0, 1, 2u+ 2v)>.

2. The differential is

(dx)( 0.5
1

)( 2
1

)
= (xu

(
0.5
1

)
, xv
(
0.5
1

)
)
(
2
1

)
=
( 1 0
0 1
3 3

)(
2
1

)
=
( 2
1
9

)
.
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