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Laplacian
Exercise 1 (One Point). In this exercise we investigate the eigenvectors of the
Laplace matrix L = M−1C ∈ Rn×n as introduced in the lecture and last exercise.
(In the last exercise the stiffness (or cotangent) matrix C was denoted by S.)

1. Show that φ is an eigenvector of L with eigenvalue λ iff it is a solution to the
generalized eigenvalue problem

λMφ = Cφ

2. Show that 〈·, ·〉M := 〈·,M ·〉 defines an inner product.

3. Show that the Laplacian matrix L is symmetric with respect to 〈·, ·〉M , i.e.
〈Lx, y〉M = 〈x, Ly〉M .

4. Show that L has real eigenvalues?

5. Show that you can find eigenvectors {φi} of L such that ΦTMΦ = Id. Here Φ
is the matrix with the eigenvectors as columns

Φ =

 | |
φ1 . . . φn

| |

 .

6. Let f ∈ Rn, define coefficients αi ∈ R by αi = 〈f, φi〉M . Show that f =∑
i αiφi, i.e. {φi} is an orthonormal basis of Rn.

Solution. 1. Let φ is be an eigenvector of L with eigenvalue λ, it holds by the
definition

λφ = Lφ = M−1Cφ

⇔ λMφ = Cφ.
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2. We need to show that M is positive definite. M is defined by

Mi,j =


A(T1)+A(T2)

12
if i 6= j and T1, T2 are common triangles,∑

T∈N(i)
A(T )
6

if i = j and N(i) is the set of incident triangles,
0 otherwise.

Let n be the number of vertices and m be the number of edges. We now
construct matrix F ∈ Rm×n, such that M = F>F . Let the e-th edge connect

vertices i, j, set Fe,i = Fe,j =
√

A(T1)+A(T2)
12

, where T1, T2 are the common
triangles of vertices i, j. Set all other entries of F to zero. Calculating the
matrix-matrix product F>F we get (F>F )i,j =

∑
e Fe,iFe,j. Thus (F>F )i,j =

A(T1)+A(T2)
12

if i, j are adjacent and (F>F )i,j = 0 otherwise. If i = j we get
(F>F )i,j =

∑
e F

2
e,i =

∑
T∈N(i)

A(T )
6

. Thus M = F>F and m positive semi-
definite. Since M is invertible, M is also positive definite.

3. Recall that 〈Ax, y〉 = 〈x,A∗y〉 and for some scalar λ ∈ C it holds λ〈x, y〉 =
〈x, λy〉. Since M,C are real and symmetric, we have 〈Lx, y〉M = 〈MLx, y〉 =
〈Cx, y〉 = 〈x,Cy〉 = 〈x,MLy〉 = 〈x, Ly〉M . Now let λφ = Lφ, we have
λ〈φ, φ〉M = 〈λφ, φ〉M = 〈Lφ, φ〉M = 〈φ, Lφ〉M = 〈φ, λφ〉M = λ〈φ, φ〉M . Since
〈φ, φ〉M > 0 it holds λ = λ.

4. Let Lφ1 = λ1φ1, Lφ2 = λ2φ2, ‖φ1‖M = ‖φ2‖M = 1. We get λ1〈φ1, φ2〉M =
〈λ1φ1, φ2〉M = 〈Lφ1, φ2〉M = 〈φ1, Lφ2〉M = 〈φ1, λ2φ2〉M = λ2〈φ1, φ2〉M . Thus
〈φ1, φ2〉M = 0, if λ1 6= λ2 and 〈φ1, φ2〉M = 1, if λ1 = λ2 (ignoring eigenvalues
of multiplicity > 1).

5. αi = 〈f, φi〉M = 〈φi,Mf〉, thus α = Φ>Mf = Φ−1f , thus f = Φα.

The Heat Equation
Let u : R≥0 → Rn be a continuous sequence of vectors u(t) ∈ Rn, where we call t
the time parameter. Since the eigenvectors {φi} of L form an orthonormal basis of
Rn, u(t) can be written as u(t) =

∑
i αi(t)φi, where the coefficients αi : R≥0 → R

are real-valued functions of time parameter t. We say u(t) is a discrete distribution
of heat if it satisfies the heat equation

∂

∂t
u(t) = Lu(t).

From the linearity of differentiation we can write ∂
∂t
u(t) as

∂

∂t
u(t) =

∑
i

φi
∂

∂t
αi(t).

Exercise 2 (One Point). Let u : R≥0 → Rn, u(t) =
∑

i αi(t)φi, now be any such
sequence of vectors that satisfies the heat equation.
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1. Show that there exists coefficients ci ∈ R, 1 ≤ i ≤ n, such that

αi(t) = ci exp(λit).

2. Let u0 ∈ Rn and set u(0) = u0. Show that the coefficients ci can be computed
by ci = 〈u0, φi〉M .

The exercise shows that if we let some initial heat distribution u0 diffuse over
time t the resulting heat distribution u(t) can be computed by

u(t) =
∑
i

〈u0, φi〉M exp(λit)φi.

If our triangle mesh has n vertices we can define the heat kernel signature HKS(vi, t)
for vi at time t by

HKS(vi, t) =
∑
i

〈ei, φi〉M exp(λit)φi,

where ei ∈ Rn is the vector that is 0 everywhere except in the i-th component. Now
we can discretize the time line by taking a finite subset T = {t1, . . . , tT} ⊂ R≥0 and
define the vector valued heat kernel signature of vertex vi by

HKST (vi) =
(
HKS(vi, t1), . . . ,HKS(vi, tT )

)
.

Solution. 1. Let u(t) =
∑

i αi(t)φi, we expand the heat equation on both sides:

∂

∂t
u(t) = Lu(t)∑

i

φi
∂

∂t
αi(t) = L(

∑
i

αi(t)φi) =
∑
i

αi(t)Lφi∑
i

φi
∂

∂t
αi(t) =

∑
i

φiλiαi(t).

Since vectors φi are linear independent, it holds for all i:

∂

∂t
αi(t) = λiαi(t).

From basic analysis we know that αi(t) = ci exp(λit), where ci ∈ R is any
number, is a solution to this differential equation.

2. Since {φi} is an orthonormal basis of Rn it holds u0 =
∑

i〈φi, u0〉Mφi. Thus
〈φi, u0〉M = αi(0) = ci exp(λi0) = ci.
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Programming: The Discrete Laplace Operator
Exercise 3 (Two points). Download and expand the file exercise6.zip from the
lecture website. Modifiy the files cotanmatrix.m, massmatrix.m, heatsimulation.m,
and hks.m to implement the functions as explained below. You can run the script
exercise.m to test and visualize your solution.

cotanmatrix.m The function should compute the matrix C ∈ Rn×n based on the cotangent
scheme as defined in the lecture. The triangle mesh is given by matrices
V ∈ Rn×3 and F ∈ Nm×3, where n is the number of vertices and m the
number of triangles. C should be returned in sparse format.

massmatrix.m The function should compute the matrix M ∈ Rn×n based on the scheme
defined in the lecture. The triangle mesh is given by matrices V ∈ Rn×3 and
F ∈ Nm×3, where n is the number of vertices and m the number of triangles.
M should be returned in sparse format.

exercise.m Look at the code for the eigen decomposition. You see it is very easy to com-
pute the generalized eigen decomposition λMφ = Cφ by the matlab function
eigs.

heatsimulation.m Given some initial heat distribution u0 ∈ Rn, the function simulates the diffu-
sion of heat on the mesh. The function should display the distribution of heat
at several given time points t1, . . . , tT ∈ R+.

hks.m The function should compute for each point on the mesh the heat kernel sig-
nature at time points t1, . . . , tT ∈ R+.
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