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Figure 1: Near isometric shape correspondence as a sparse modeling problem (see details in text): Indicator functions of
repeatable regions on two shapes are detected and represented as matrices of coefficients AAA and BBB in the corresponding or-
thonormal harmonic bases ΦΦΦ and ΨΨΨ. When the regions are brought into correspondence, the point-to-point correspondence
between the shapes can be encoded by an approximately diagonal matrix CCC. In the proposed procedure termed as permuted
sparse coding, we solve ΠΠΠBBB = AAACCC+OOO simultaneously for an approximately diagonal CCC and the permutation ΠΠΠ bringing the
indicator functions into correspondence. To cope with imperfectly matching regions, we relax the surjectivity of the permutation
and absorb the mismatches into a row-wise sparse outlier matrix OOO. For visualization purposes, the coloring of the regions
is consistent as after the application of the permutation. Correspondence is shown between a synthetic TOSCA and scanned
SCAPE shape.

Abstract

We present a novel sparse modeling approach to non-rigid shape matching using only the ability to detect repeat-
able regions. As the input to our algorithm, we are given only two sets of regions in two shapes; no descriptors
are provided so the correspondence between the regions is not know, nor we know how many regions correspond
in the two shapes. We show that even with such scarce information, it is possible to establish very accurate corre-
spondence between the shapes by using methods from the field of sparse modeling, being this, the first non-trivial
use of sparse models in shape correspondence. We formulate the problem of permuted sparse coding, in which
we solve simultaneously for an unknown permutation ordering the regions on two shapes and for an unknown
correspondence in functional representation. We also propose a robust variant capable of handling incomplete
matches. Numerically, the problem is solved efficiently by alternating the solution of a linear assignment and a
sparse coding problem. The proposed methods are evaluated qualitatively and quantitatively on standard bench-
marks containing both synthetic and scanned objects.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing And Computer Vision]: Scene
Analysis—Shape

1. Introduction

Matching of deformable shapes is a notoriously difficult
problem playing an important role in many applications

[KZHCO10]. Unlike rigid matching where the correspon-
dence can be parametrized by a small number of parame-
ters (rotation and translation of one shape w.r.t. the other
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[CM91, BM92]), non-rigid matching typically uses point-
wise representation of correspondence, which results in the
number of degrees of freedom growing exponentially with
the number of matched points.

Non-rigid correspondence methods try to find corre-
spondence by minimizing some structure distortion. The
structures can be point-wise (local descriptors [ZBVH09,
SOG09, GBAL09, ASC11]), pair-wise (distances [EK01,
MS05, BBK06, BBK∗10]), or higher order [ZWW∗10].

In order to make the matching problem computation-
ally feasible, it is crucial to reduce the size of the search
space [TBW∗11]. Most methods use a combination of point-
and pair-wise structure matching in order to achieve this,
and typically consist of three main components: feature de-
tection, feature description, and regularization. Given two
shapes, a feature detector allows to find a set of landmarks
(points or regions) that are repeatable, i.e., appear (possibly
with some inaccuracy) on both shapes. Feature descriptor
then assigns to each feature a vector capturing some local
geometric properties of the shape; very often, the two pro-
cesses are combined into a single one. Using the descrip-
tors, landmarks on two shapes can be matched (it has been
shown [OMMG10] that under some conditions, correct land-
mark matching fully determines the intrinsic correspondence
between the shapes). Such a matching reduces the search
space size to points with similar descriptors. However, since
the matching uses only local information, such correspon-
dence can be noisy, and some kind of regularization based
on higher-order information is needed to rule out bad or in-
consistent correspondences. This information is also used to
establish the correspondence between the rest of the points
on the shapes. Often, the process is applied hierarchically,
restricting the candidate matches to points in the proximity
of the landmarks [WBBP11, SY11].

Computer graphics and geometry processing literature
contains a plethora of approaches for each of the afore-
mentioned components. Feature detection methods try to lo-
cate stable points or regions [DMAMS10, LBB11, HKG11,
SvKK∗11] that are invariant under isometric deformations
and robust to noise. Popular feature descriptors include
the heat kernel signature (HKS) [SOG09, GBAL09], wave
kernel signature (WKS) [ASC11], global point signature
(GPS) [Rus07] or methods adopted from the domain of im-
age analysis [ZBVH09]. As regularization, pairwise struc-
tures such as geodesic [MS05, BBK06] or diffusion dis-
tances [BBK∗10] and higher-order structures [ZWW∗10]
have been used.

Alternatively, there have been several attempts to repre-
sent correspondences with a small set of parameters. Elad
and Kimmel [EK01] used multidimensional scaling (MDS)-
type methods to embed the intrinsic structure of the shapes
into a low-dimensional Euclidean space, posing the problem
of non-rigid matching as a problem of rigid matching of the
corresponding embeddings (“canonical forms”). Mateus et

al. [MHK∗08] used spectral embeddings instead of MDS.
Lipman and Funkhouser [LF09] embedded the shapes into a
disk by means of conformal maps and represented the corre-
spondence as a Möbius transformation.

More recently, Ovsjanikov et al. [OBCS∗12] introduced
the functional representation of correspondences, allowing
to perform a “calculus” of correspondences. In this ap-
proach, correspondence is modeled as a correspondence be-
tween functions on two shapes rather than points, and can
be compactly represented in the Laplace-Beltrami eigenba-
sis as a matrix of coefficients of decomposition of the basis
functions of the first shape in the basis of the second one. In
this paper, we will be relying upon this latter representation.

1.1. Main contribution

The main practical contribution of this paper is an approach
for finding dense intrinsic correspondence between near-
isometric shapes with very little known information: we only
assume to be able to detect regions in two shapes in a re-
peatable enough way (i.e., that at least some regions in one
shape correspond accurately enough to some other regions
in another shape). No region descriptors are given, so the
correspondence of the regions is unknown. The assumption
of near-isometry assures that in the functional representation
of [OBCS∗12], the unknown correspondence can be repre-
sented as a sparse matrix. The assumption of repeatable re-
gions implies that there exists some unknown permutation
that orders the regions according to their correspondence.

We formulate the problem of permuted sparse coding,
in which we simultaneously look for the permutation and
the correspondence, thereby introducing the very success-
ful area of sparse modeling into efficient and state-of-the-
art shape correspondence. We note that with the permuta-
tion fixed, our problem becomes the standard sparse coding
problem; having the correspondence fixed, the problem be-
comes a linear assignment. This allows efficient numerical
solution by alternating the two aforementioned problems and
employing efficient solvers that exist for both.

Our method relies on a pretty common assumption that
the shapes are nearly-isometric (though our experimental
results show our approach still works even when depart-
ing from this assumption), and out of all methods we are
aware of, it uses perhaps the scarcest amount of data to es-
tablish dense correspondence between the shapes. For ex-
ample, sandard region detectors with high repeatability such
as [LBB11] are sufficient.

Compared to recent techniques for region-wise shape
matching (see, e.g., [GF09,VKTS∗11,HKG11,PBB11]), our
approach has several important practical advantages: First,
we do not use any feature descriptor. Second, most region-
wise correspondence approaches require an additional step
of extending the correspondence between matched regions
to the rest of the points.
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The rest of the paper is organized as follows. In Sec-
tion 2, we overview the functional representation of corre-
spondences, allowing to work with correspondences as alge-
braic structures, and state the main notions in sparse model-
ing. In Section 3, we formulate our problem of permuted
sparse coding for establishing correspondence from a set
of repeatable regions given in unknown order. We then ex-
tend the problem to the general setting where the region
detection process is not perfectly repeatable. In Section 4,
we describe the numerical optimization used to solve our
permuted sparse coding problem. Experimental results are
shown in Section 5. Finally, Section 6 discusses the limita-
tions and possible extensions of the proposed framework and
concludes the paper.

2. Background

2.1. Functional representation of correspondences

The direct representation of correspondences as maps be-
tween two non-Euclidean spaces limits the range of tools
that can be employed for correspondence computation due
to the lack of an algebraic structure. In this paper, we rely on
the functional representation of correspondences introduced
in [OBCS∗12], which overcomes this limitation. In what fol-
lows, we briefly review the main idea of such functional rep-
resentations.

Let X and Y be two shapes, modeled as compact smooth
Riemannian manifolds, related by a bijective correspon-
dence t : X → Y . Then, for any real function f : X → R,
we can construct a corresponding function g : Y → R as
g = f ◦ t−1. The correspondence t uniquely defines a map-
ping between two function spaces T : F(X ,R)→F(Y,R),
where F(X ,R) denotes the space of real functions on X .
Such a representation is linear, since for every pair of func-
tions f1, f2 and scalars α1,α2,

T (α1 f1 +α2 f2) = (α1 f1 +α2 f2)◦ t−1

= α1 f1 ◦ t−1 +α2 f2 ◦ t−1 = α1T ( f1)+α2T ( f2). (1)

Assuming that X is equipped with a basis {φi}i≥1, any
f : X → R can be represented as

f = ∑
i≥1

aiφi (2)

with the ai being some representation coefficients (in case
of an orthonormal basis, ai = 〈 f ,φi〉; in the general case, the
coefficients are found by projecting the function f on the
bi-orthonormal basis). Due to the linearity of T ,

T ( f ) = T

(
∑
i≥1

aiφi

)
= ∑

i≥1
aiT (φi) (3)

If the shape Y is further equipped with a basis {ψ j} j≥1, then
for every i there exists coefficients ci j such that

T (φi) = ∑
j≥1

ci jψ j, (4)

and we can write

T ( f ) = ∑
i, j≥1

aici jψ j. (5)

Let us now assume finite sampling of X and Y , with m
samples (for simplicity, we assume that the shapes are sam-
pled at the same number of samples m. The extension to the
case with a different number of samples is straightforward).
The bases are represented as the m× n matrices ΦΦΦ and ΨΨΨ

containing, respectively, n discretized functions φi and ψ j as
the columns. The functions f and g = T ( f ) can now be rep-
resented as n-dimensional vectors fff = ΦΦΦaaa and ggg = ΨΨΨbbb with
the coefficients aaa and bbb. Using this notation, Equation (5) can
be rewritten as ΨΨΨbbb = T (ΦΦΦaaa) = ΨΨΨCCCTaaa; since ΨΨΨ is invertible,
this simply means that

bbbT = aaaTCCC. (6)

Thus, the n×n matrix CCC fully encodes the linear map T be-
tween the functional spaces, and contains the coordinates in
the basis ΨΨΨ of the mapped elements of the basis ΦΦΦ.

2.2. Point-to-point correspondence

Point-to-point correspondences assume that each point i on
X corresponds to some point j on Y . In functional represen-
tation, this is equivalent to having CCC that makes each row
of ΨΨΨCCCT coincide with some row of ΦΦΦ [OBCS∗12]. In appli-
cations requiring point-to-point correspondence, given some
CCC, it can be converted into a point-to-point correspondence
by thinking of ΦΦΦ and ΨΨΨ as n-dimensional points clouds, and
orthogonal matrix CCC as a rigid alignment transformation be-
tween them. This procedure is equivalent to iterative clos-
est point (ICP) in n dimensions [OBCS∗12], initialized with
the given CCC0: first, for each row i of ΨΨΨC0C0C0

T, find the closest
row j∗i in ΦΦΦ (this operation can be performed efficiently us-
ing approximate nearest neighbor algorithms). Then, find or-
thonormal CCC minimizing ∑i ‖ΦΦΦ j∗i −ΨΨΨCCCT‖2 and set CCC0 =CCC.
This operation is repeated until convergence and can be per-
formed efficiently over all the vertexes of X and Y using ap-
proximate nearest neighbor algorithms.

2.3. Sparse modeling

One of the main tools that will be used in this paper
are sparse models. In what follows, we give a very brief
overview of this vast field, and refer the reader to [Ela10]
for a comprehensive treatise. The central assertion of sparse
modeling is that many families of signals (and later opera-
tions as here introduced) can be represented as a sparse lin-
ear combination in an appropriate domain, usually referred
to as the dictionary. This can be written as xxx ≈ DDDzzz, where
xxx denotes the signal, DDD the dictionary, and zzz the sparse vec-
tor of representation coefficients. The dictionary is often se-
lected to be overcomplete, i.e., with more columns than rows.

Finding the representation of a signal xxx in a given dictio-
nary DDD is usually referred to as sparse representation pursuit
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Figure 2: Dense point-to-point correspondences obtained between the left TOSCA human shape and its approximate isometries.
Corresponding points are marked with consistent colors. The average correspondence distortion is depicted in units of the
reference shape diameter. The highest distortions are obtained on the non-isometric joints, but do not exceed 6% of the diameter.

or sparse coding. Among the variety of pursuit methods, we
will focus on the so-called Lasso formulation [Tib96] that
finds zzz as the solution to the unconstrained convex program

min
zzz
‖xxx−DDDzzz‖2

2 +λ‖zzz‖1. (7)

The first term is the data fitting term, while the second term
involving `1 norm, ‖zzz‖1 = |z1|+ . . .+ |zn|, promotes a sparse
solution; the parameter λ controls the relative importance of
the latter. Proximal splitting methods [Nes07] are among the
most efficient and most frequently used numerical tools to
solve problem (7); in Section 4, we present a variant of the
proximal splitting algorithms for the solution of the pursuit
problem arising in shape correspondence as detailed in the
sequel.

In some cases, signals not admitting the simplistic model
of element-wise sparsity still manifest more intricate types
of structured sparsity. In structured sparse models, the non-
zero elements of zzz come in groups or, more generally, in
hierarchies of groups. A common class of structured pursuit
problems can be formulated as convex programs of the form

min
zzz
‖xxx−DDDzzz‖2

2 +λ‖zzz‖1,2, (8)

where the `1,2 norm, ‖zzz‖1,2 = ‖zzz1‖2 + ·+ ‖zzzk‖2, assumes
that the vector zzz is decomposed into k non-overlapping sub-
vectors zzzi, and promotes group-wise sparse solutions (i.e.,
the solution will have a small number of groups with non-
zero coefficients, but the sub-vectors representing each such
non-zero group will be dense).

While structured sparse models enforce group structure of
each representation vector independently, it is often useful to
consider the structure shared by multiple vectors. Collabo-
rative sparse models operate on data matrices XXX, in which
each column corresponds to a data vector, and assert that
the patterns of non-zero coefficients are shared across the
corresponding representation vectors, ZZZ. This is achieved by
solving a pursuit problem of the form

min
ZZZ
‖XXX−DDDZZZ‖2

F +λ‖ZZZ‖2,1, (9)

where the first term involving the Frobenius norm serves as
the data fitting term, and the second term with the `2,1 norm
promotes row-wise sparsity of the solution. The `2,1 norm is
defined as ‖ZZZ‖2,1 = ‖zzzT

1‖2 + · · ·+‖zzzT
m‖2, where zzzT

i denotes
the i-th row of ZZZ (note the difference from the `1,2 column-
wise counterpart!).

In this paper, we use formulate the shape correspondence
problem using a sparse model, and use sparse modeling tools
to efficiently solve it.

3. Sparse modeling of correspondences

In case the shapes X and Y are isometric and the corre-
sponding Laplace-Beltrami operators have simple spectra
(no eigenvalues with multiplicity greater than one), the har-
monic bases (Laplacian eigenfunctions) have a compatible
behavior, ψi = T (φi) such that ci j =±δi j. Choosing the dis-
cretized eigenfunctions of the Laplace-Beltrami operator as
ΦΦΦ and ΨΨΨ causes every low-distortion correspondence being
represented by a nearly diagonal, and therefore very sparse,
matrix CCC.

In practice, due to lack of perfect isometry and numerical
inaccuracies, the diagonal structure of CCC is manifested for
the first eigenfunctions corresponding to the small eigenval-
ues (low frequencies), and is gradually lost with the increase
of the frequency (see, e.g., Figure 1). However, a correspon-
dence with low metric distortion will usually be represented
by a sparse CCC. We use this property to formulate the compu-
tation of correspondences in terms of a sparse representation
pursuit problem.

Let us assume to have some region (or feature) detec-
tion process that given a shape X produces a collection of
functions { fi : X → R} based on the intrinsic properties of
the shape only. For example, the fi’s can be indicator func-
tions of the maximally stable components (regions) of the
shape [LBB11]. Since the process is intrinsic, given a nearly
isometric deformation Y or X , it should produce a collection
of similar functions {g j : Y → R}.

c© 2012 The Author(s)
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Figure 3: Dense point-to-point correspondences obtained between the left SCAPE human shape and various other poses.
Corresponding points are marked with consistent colors.

Figure 4: First row: point-to-point correspondences obtained between different non-isometric shapes: male and female (left);
two strongly non-isometric deformations of the dog shape from the TOSCA set (middle); TOSCA and SCAPE human shapes
(right). Second row: Point-to-point correspondences obtained between SHREC shapes undergoing nearly isometric deforma-
tions and (from left to right) spike noise, Gaussian noise, and topological noise in the form of large and small holes.

To simplify the presentation, let us assume that the pro-
cess is perfectly repeatable in the sense that it finds q func-
tions on X and Y , such that for every fi there exists a
g j = fi ◦ t related by the unknown correspondence t. We
stress that the ordering of the fi’s and g j’s is unknown, i.e.,
we do not know to which g j in Y a fi in X correspond. This
ordering can be expressed by an unknown q×q permutation
matrix ΠΠΠ (in Section 3.2, we consider the more general case
when the number of functions detected on X and Y can be
different, i.e., ΠΠΠ is non-square).

Representing the functions in the bases on each shape, we
have fffi =ΦΦΦaaai and ggg j =ΨΨΨbbb j. Since each pair of correspond-
ing fffi and ggg j shall satisfy (6), we can write

ΠΠΠBBB = AAACCC, (10)

where AAA and BBB are the q× n matrices containing, respec-
tively, aaaT

i and bbbT
j as the rows, and πi j = 1 if aaai corresponds

to bbb j and zero otherwise.

3.1. Permuted sparse coding

Note that in relation (10), both ΠΠΠ and CCC are unknown, and
solving for them is a highly ill-posed problem. However, by
recalling that the correspondence we are looking for should
be represented by a nearly-diagonal CCC, we formulate the fol-
lowing problem

min
CCC,ΠΠΠ

1
2
‖ΠΠΠBBB−AAACCC‖2

F +λ‖WWW�CCC‖1, (11)

c© 2012 The Author(s)
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Figure 5: Top: dense point-to-point correspondences ob-
tained between two SCAPE human shapes using 45 and 42
WKS point features (rejected features are marked in red).
Corresponding points are marked with consistent colors.
Bottom, left-to-right: recovered permutation matrix ΠΠΠ (re-
jected matches are marked in red); outlier matrix OOO; and
correspondence matrix CCC.

Figure 6: Dense point-to-point correspondences obtained
between the TOSCA human shape (left) and various other
non-isometric shapes (right). The approach fails for signifi-
cantly non-isometric shapes due to deviation from the diag-
onal form of CCC.

where the minimum is sought over n×n matrices CCC (captur-
ing the correspondence t between the shapes in the func-
tional representation) and q× q permutations ΠΠΠ (captur-
ing the correspondence between the detected regions on the
shapes). The first term containing the Frobenius norm can
be interpreted as the data term, while the second term, con-
taining the weighted `1 norm promotes a sparse CCC; � de-
notes element-wise multiplication, and the non-negative pa-
rameter λ determines the relative importance of the penalty.
Small weights wi j in WWW are assigned close to the diagonal,

while larger weights are selected for the off-diagonal ele-
ments. This promotes diagonal solutions.

The solution of (11) can be obtained using alternating
minimization iterating over CCC with fixed ΠΠΠ, and ΠΠΠ with fixed
CCC. Note that with fixed ΠΠΠ, we can denote BBB′ = ΠΠΠBBB and re-
duce problem (11) to

min
CCC

1
2
‖BBB′−AAACCC‖2

F +λ‖WWW�CCC‖1, (12)

which resembles the Lasso problem frequently employed
for the pursuit of sparse representations. On the other hand,
when CCC is fixed, we set AAA′ =AAACCC, reducing the optimization
objective to

‖ΠΠΠBBB−AAA′‖2
F = (13)

tr
(

BBBT
ΠΠΠ

T
ΠΠΠBBB
)
−2tr

(
BBBT

ΠΠΠ
TAAA′
)
+ tr

(
AAA′TAAA′

)
.

Since ΠΠΠ is a permutation matrix, ΠΠΠ
T
ΠΠΠ = III, and the only non-

constant term remaining in the objective is the second linear
term. Problem (11) thus becomes

max
ΠΠΠ

tr
(

ΠΠΠ
TEEE
)
, (14)

where EEE = AAA′BBBT = AAACCCBBBT and the maximization is per-
formed over permutation matrices. To make it practically
solvable, we allow ΠΠΠ to be a double-stochastic matrix, which
yields the following linear assignment problem:

max
ΠΠΠ≥000

vec(EEE)Tvec(ΠΠΠ) s.t.
{

ΠΠΠ111 = 111
ΠΠΠ

T111 = 111.
(15)

We refer to problem (11) as to permuted sparse coding,
and propose to solve it by alternating the solution of the stan-
dard sparse coding problem (12) and the solution of the lin-
ear assignment problem (15). The sparsity constraint has a
regularization effect on this, otherwise extremely ill-posed,
problem, and the following strong property holds:

Proposition 1 The process alternating subproblems (12) and
(15) converges to a local minimizer of the permuted sparse
coding problem (11).

Due to lack of space, we provide the proof in the supple-
mentary materials. This result means, among other, that de-
spite the relaxation of the permutation matrix to a double-
stochastic matrix in the assignment subproblem (15), we are
actually recovering a true permutation matrix. This follows
from the total unimodularity of the constraints in (15).

3.2. Robust permuted sparse coding

So far, we have assumed the existence of a bijective, albeit
unknown, correspondence between the fi’s and the g j’s. In
practice, the process detecting these functions (e.g., stable
regions) is often not perfectly repeatable. In what follows,
we will make a more realistic assumption that q functions fi
are detected on X , and r functions g j detected on Y (with-
out loss of generality, q ≤ r), such that some fi’s have no

c© 2012 The Author(s)
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counterpart g j, and vice versa. This partial correspondence
can be described by a q× r partial permutation matrix ΠΠΠ in
which now some columns and rows may vanish.

Let us assume that s ≤ q fi’s have corresponding g j’s.
This means that there is no correspondence between r− s
rows of BBB and q− s rows of AAA, and the relation ΠΠΠBBB ≈ AAACCC
holds only for an unknown subset of its rows. The mis-
matched rows of BBB can be ignored by letting some columns
of ΠΠΠ vanish, meaning that the correspondence is no more
surjective. This can be achieved by relaxing the equality con-
straint ΠΠΠ

T111 = 111 in (15) replacing it with ΠΠΠ
T111≤ 111. However,

dropping injectivity as well and relaxing ΠΠΠ111 = 111 to ΠΠΠ111 ≤ 111
would result in the trivial solution ΠΠΠ = 000. To overcome this
difficulty, we demand every row of AAA to have a matching row
in BBB, and absorb the r− s mismatches in a row-sparse q×n
outlier matrix OOO that we add to the data term of (11). This
results in the following problem

min
CCC,OOO,ΠΠΠ

1
2
‖ΠΠΠBBB−AAACCC−OOO‖2

F +λ‖WWW�CCC‖1 +µ‖OOO‖2,1, (16)

which we refer to as robust permuted sparse coding. The last
term involves the `2,1 norm

‖OOO‖2,1 =
r

∑
i=1
‖oooT

i ‖2, (17)

which can be thought of as the `1 norm of the vector of the `2
norms of the rows oooT

i of OOO. The `2,1 norm promotes row-wise
sparsity, allowing to absorb the errors in the data term corre-
sponding to the rows of AAA having no corresponding rows in
BBB; the parameter µ≥ 0 controls the amount of regularization.
The q× r matrix ΠΠΠ is searched over all injective correspon-
dences.

As before, problem (16) is split into two sub-problems,
one with the fixed permutation ΠΠΠ,

min
CCC,OOO

1
2
‖BBB′−AAACCC−OOO‖2

F +λ‖WWW�CCC‖1 +µ‖OOO‖2,1, (18)

with BBB′ =ΠΠΠBBB, and the other one with the fixed CCC,

max
ΠΠΠ≥000

vec(EEE)Tvec(ΠΠΠ) s.t.
{

ΠΠΠ111 = 111
ΠΠΠ

T111≤ 111,
(19)

with EEE = (AAACCC)BBBT. Note that an injective correspondence
is relaxed into a row-wise stochastic and column-wise sub-
stochastic matrix ΠΠΠ. Proposition 1 simply extends to the ro-
bust formulation as well.

4. Numerical solution

The solution of the robust permuted sparse coding problem
(16) is reduced to alternating two relatively standard opti-
mization problems, and there exist many readily available
efficient numerical tools to solve them. For the sake of com-
pleteness, we provide a concise description of the involved
numerics.

Problem (19), being a simple linear assignment problem,
is solved using the Hungarian algorithm. As an alternative,
linear programming can be employed. To reduce the search
space size, we disallow certain impossible permutations such
as those relating regions with very distinct sizes.

In order to solve (18), we use the family of forward-
backward splitting algorithms [Nes07] designed for solving
unconstrained optimization problems in which the cost func-
tion can be split into the sum of two terms,

min
xxx

h1(xxx)+h2(xxx), (20)

one, h1, convex and differentiable with an α-Lipschitz con-
tinuous gradient and another, h2, convex extended real val-
ued and possibly non-smooth. Clearly, problem (18) falls in
this category.

The forward-backward splitting method with fixed con-
stant step defines a series of iterates, {xxxk}k,

xxxk+1 = PPPαh2

(
xxxk− 1

α
∇h1(xxx

k)

)
, (21)

where

PPPαh2(xxx) = argmin
uuu
‖uuu−xxx||22 +αh2(uuu) (22)

denotes the proximal operator of h2. Many alternatives have
been studied in the literature to improve the convergence rate
of forward-backward splitting algorithms [BT09, Nes07].
Accelerated versions reach quadratic convergence rates (the
best possible for the class of first order methods). The discus-
sion of theses methods is beyond of the scope of this paper.

In our case, the objective comprises a quadratic function
h1 = ‖BBB′ −AAACCC−OOO‖2

F and the non-smooth function h2 =
λ‖WWW�CCC‖1+µ‖OOO‖2,1. The proximal operator splits into two
operators, one in CCC and another one in OOO, both having closed
forms. The proximal operator corresponding to the `1 norm
term is given by the weighted soft threshold function

PPP1(CCC) = max
{
|CCC|− λ

α
WWW
}
� sign(CCC), (23)

where the absolute value and the sign functions are applied
element-wise. The i-th row of the proximal operator corre-
sponding to the `2,1 norm term is given by

(PPP2(OOO))i = max
{
‖oooT

i ‖2−
µ
α

} oooT
i

‖oooT
i ‖2

. (24)

The gradient of the quadratic data term with respect to CCC and
OOO is given straightforwardly by

∇CCCh1 = AAATAAACCC+AAATOOO−AAATBBB′

∇OOOh1 = OOO+AAACCC−BBB′. (25)

The Lipschitz constant of the gradient determining the step
size is bounded by the maximum eigenvalue

α ≤ λmax

(
AAATAAA AAAT

III AAA

)
. (26)
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input : Data BBB′,AAA; parameters λ,µ; step size α.
output: Sparse matrix OOO and row-wise sparse outlier

matrix OOO
Initialize OOO0 =BBB′ and CCC0 = 000.
for k=1,2,. . . ,until convergence do

CCCk+1 = PPP1

(
(III− 1

α
AAATAAA)CCCk− 1

α
AAAT(OOOk−BBB′)

)
OOOk+1 = PPP2

(
(1− 1

α
)OOOk− 1

α
(AAACCCk−BBB′)

)
end

Algorithm 1: Forward-backward splitting method for the
solution of (18).

Plugging the above expressions together into (21) yields the
forward-backward splitting optimization summarized in Al-
gorithm 1.

5. Experimental results

In order to evaluate our approach, we performed several ex-
periments on data from the TOSCA [BBK08], SHREC’11
[B∗] and SCAPE [ASK∗05] datasets. The TOSCA set
contains high-quality (10K-50K vertices) synthetic trian-
gular meshes of humans and animals in different poses
with known ground truth correspondences between them.
SHREC’11 contains meshes from the TOSCA set under-
going simulated transformations. The SCAPE set contains
high-resolution (12K vertices) scans of a real human in dif-
ferent poses.

For each pair of shapes we calculated the MSERs using
6-10 eigenfunctions and selected regions with areas of at
least 5-10% of the total shape area, resulting in about 5−15
detected regions (see Figure 1). These parameters were se-
lected empirically for our data sets.

The segments of each shape were projected onto 20 eigen-
functions and the corresponding CCC matrix was calculated by
solving the sparse coding subproblem (18) using an acceler-
ated variant of the method described in Section 4. The linear
assignment subproblem (15) was solved using the Hungarian
method [Kuh55]. We initialized the permutation matrix with
ΠΠΠ = 1

q111111T, and the correspondence matrix with CCC = 000. We
observed a rapid convergence of the alternating minimiza-
tion procedure in one or two iterations (see Figure 7 where
for visualization purposed, ΠΠΠ was initialized to identity). We
found that the method consistently converged to the same
solution regardless of the initialization. Finally, after conver-
gence of the alternating minimization, the resulting CCC was
refined using the method described in Section 2.2.

The robustness of the method is demonstrated in Fig-
ures 2–4; correct correspondences are computed even when
the shapes undergo non-isometric deformations and are con-
taminated by geometric or topological noise. In Figure 5,
we used around 45 WKS features detected on two SCAPE
shapes, to demonstrate that our method works equally well
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Figure 8: Quantitative evaluation of the proposed permuted
sparse coding (PSC) shape correspondence algorithm and
its comparison to other correspondence algorithms on the
SCAPE shapes using the evaluation protocol from [KLF11].
Compared are Ovsjanikov et el. original method [OBCS∗12]
(OBSC), and blended maps [KLF11].

Table 1: Average runtime (in seconds) as a function of the shape
size for different stages in the proposed method: Basis – harmonic
basis computation; MSER – region detection; Opt. – alternating
minimization procedure; Ref. – ICP-based refinement and point-to-
point correspondence computation; Tot. – total runtime.

Vertices Basis MSER Opt. Ref. Tot.
5K 0.53 0.61 7.80 1.41 10.35

10K 0.99 1.32 7.91 2.70 12.92
20K 2.03 3.58 7.91 5.52 19.04
50K 5.57 14.23 7.85 13.99 41.64

with point features. Observe how robust permuted sparse
coding detects and ignores features without matches, and
note the effect of such outliers on the matrices ΠΠΠ and OOO.
Figure 8 shows a quantitative evaluation and comparison
of our algorithm to other correspondence algorithms on the
SCAPE data set. The evaluation was performed using the
code and data from [KLF11]. Comparison to [OBCS∗12]
was performed in two settings: In the first setting, k = 20
basis functions were used with indicator functions of the
detected stable regions (about four regions per shape). In
the second setting, k = 100 harmonics were used, and 200
wave kernel maps were automatically generated for each re-
gion, following verbatim [OBCS∗12]. Our method outper-
forms existing methods while using less information. Fi-
nally, Figure 6 shows the failure of our approach for very
non-isometric shapes.

The code used in the experiments was implemented in
Matalb with parts written in C. The approximate nearest
neighbor search in the ICP refinement step was accelerated
using the FLANN library. The experiments were run on a
2.4GHz Intel Xeon CPU. End-to-end execution time varied
from 10 to 50 seconds, with the detailed breakdown summa-
rized in Table 1.
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Figure 7: Outer iterations of robust permuted sparse coding alternating the solution of the sparse representation purusit
problem (18) with the linear assignment problem (19). Three iterations, shown left-to-right, are required to achieve convergence.
Depicted are the permutation matrix ΠΠΠ (first row), the correspondence matrix CCC (second row), and the outlier matrix OOO (last
row). The resulting point-to-point correspondence and the correspondence matrix CCC refined using the ICP as described in
Section 2.2 are shown in the rightmost column.

6. Discussion and Conclusion

In this paper, we posed the problem of finding intrinsic cor-
respondence between near-isometric deformable shapes as a
problem of sparse modeling. Given only two set of regions in
the two shapes with unknown correspondence, we are able to
infer a dense correspondence between the shapes from two
assumptions: that at least some of the regions in the two sets
are corresponding; and that the shapes are nearly-isometric.
The latter assumption implies that in functional represen-
tation in harmonic bases the unknown correspondence be-
tween the shapes is modeled as a sparse nearly-diagonal ma-
trix; the former assumption implies that there exists an un-
known permutation that reorders the regions in correspond-
ing order. To find both the permutation and the correspon-
dence, we formulate the novel permuted sparse coding prob-
lem and propose its efficient solution. An additional sparse
coding term addressing outliers is added to the model for
handling partial matching and formulated as the robust per-
muted sparse coding.

To the best of our knowledge, among other dense cor-
respondence techniques, our method relies on the small-
est amount of information (the ability to find some repeat-
able regions) and quite generic assumption (near-isometric
shapes). In particular, it allows us to use only a region detec-
tor without a feature descriptor to find a high-quality corre-
spondence between two shapes.

We note that, as in [OBCS∗12], we explicitly assume
that the shapes are nearly isometric, and that their Lapla-
cians have simple spectrum. This assumption assures that

the Laplacian eigenbases ΦΦΦ and ΨΨΨ have a compatible be-
havior, and as a result CCC has a nearly-diagonal structure. If
we try to relax the restriction on multiplicity, CCC will still be
sparse, but with unknown sparse structure. We can can still
use our problem in this setting, imposing a different sparsity
constraint on CCC.

Relaxing the assumptions even more, we can depart
from the near-isometric model, e.g. considering applications
where one wishes to match shapes with roughly similar ge-
ometry but very different details (such as a horse and an
elephant). In such a generic setting, the Laplacian eigen-
bases may differ dramatically, and thus CCC have a non-sparse
structure. It is possible to incorporate the bases ΦΦΦ and ΨΨΨ

as variables into our problem, and in addition to finding the
permutation ΠΠΠ and correspondence CCC find also the bases
in which CCC will have a diagonal structure. This problem is
akin to dictionary learning used in the sparse modeling liter-
ature. In future research, we will study such a generalization
of our framework in hope to find correspondences between
non-isometric shapes. Another possible generalization of our
problem is for finding correspondence between collections
of shapes [NBCW∗11, KLF11, HZG∗12, KLM∗12].
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