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Definition

Definition: A Gaussian process is a collection of 
random variables, any finite number of which have 
a joint Gaussian distribution. 

The number of random variables can be infinite! 

This means: a GP is a Gaussian distribution over 
functions! 

To specify a GP we need: 

mean function:   

covariance function: 
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m(x) = E[y(x)]

k(x1,x2) = E[y(x1)�m(x1)y(x2)�m(x2)]
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Example

• green line: sinusoidal data source 

• blue circles: data points with Gaussian noise 

• red line: mean function of the Gaussian process 

• shaded red area: 2σ confidence interval
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How Can We Handle Infinity?

Idea: split the (infinite) number of random 
variables into a finite and an infinite subset.  

From the marginalization property we get: 

This means we can use finite vectors.
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The Covariance Function

The most used covariance function (kernel) is: 

It is known as “squared exponential”, “radial basis 
function” or “Gaussian kernel”. 

Other possibilities exist, e.g. the exponential 
kernel: 

This is used in the “Ornstein-Uhlenbeck” process.
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Sampling from a GP

Just as we can sample from a Gaussian 
distribution, we can also generate samples from 
a GP. Every sample will then be a function! 

Process: 

1.Choose a number of input points 

2.Compute the covariance matrix K where 

3.Generate a random Gaussian vector from  

4.Plot the values                  versus
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Sampling from a GP

Squared exponential kernel
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Exponential kernel
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Prediction with a Gaussian Process

Most often we are more interested in predicting 
new function values for given input data. 

We have:  

training data 

test input 

And we want test outputs 

The joint probability is 

and we need to compute                       .    

8

y⇤1 , . . . , y
⇤
M

x1, . . . ,xN t1, . . . , tN
x

⇤
1, . . . ,x

⇤
M

✓
y
y⇤

◆
⇠ N

✓
0,

✓
K(X,X) K(X,X⇤)
K(X⇤, X) K(X⇤, X⇤)

◆◆

p(y⇤ | x⇤, X,y)



Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Prediction with a Gaussian Process

In the case of only one test point      we have 

Now we compute the conditional distribution 

where 

This defines the predictive distribution.
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Example

Functions sampled from  
a Gaussian Process prior
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Functions sampled from the 
predictive distribution

The predictive distribution is itself a Gaussian process. 

It represents the posterior after observing the data. 

The covariance is low in the vicinity of data points.



l = �f = 1, �n = 0.1

l = 0.3,

�f = 1.08,

�n = 0.0005

�n = 0.89

�f = 1.16
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Varying the Hyperparameters

• 20 data samples 

• GP prediction with  
different kernel 
hyper parameters
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Gaussian Processes For Classification

In regression we have          , in binary 
classification we have   

To use a GP for classification, we can apply a 
sigmoid function to the posterior obtained from 
the GP and compute the class probability as: 

If the sigmoid function is symmetric: 
then we have                            . 

A typical type of sigmoid function is the logistic 
sigmoid: 
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y 2 R
y 2 {�1; 1}

p(y = +1 | x) = �(f(x))

�(�z) = 1� �(z)

p(y | x) = �(yf(x))

�(z) =
1

1 + exp(�z)
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Application of the Sigmoid Function

Function sampled from  
a Gaussian Process
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Sigmoid function applied to 
the GP function

Another symmetric sigmoid function is the 
cumulative Gaussian:

�(z) =

Z z

�1
N (x | 0, 1)dx
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Visualization of Sigmoid Functions

The cumulative Gaussian is slightly steeper than 
the logistic sigmoid
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The Latent Variables

In regression, we directly estimated f as 
 
and values of f where observed in the training 

data. Now only labels +1 or -1 are observed and 

f  is treated as a set of latent variables. 

A major advantage of the Gaussian process 

classifier over other methods is that it 

marginalizes over all latent functions rather 

than maximizing some model parameters.
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f(x) ⇠ GP(m(x), k(x,x0))
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Class Prediction with a GP

The aim is to compute the predictive distribution
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p(y⇤ = +1 | X,y,x⇤) =

Z
p(y⇤ | f⇤)p(f⇤ | X,y,x⇤)df⇤

�(f⇤)
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Class Prediction with a GP

The aim is to compute the predictive distribution 

we marginalize over the latent variables from the 
training data:
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p(y⇤ = +1 | X,y,x⇤) =

Z
p(y⇤ | f⇤)p(f⇤ | X,y,x⇤)df⇤

p(f⇤ | X,y,x⇤) =

Z
p(f⇤ | X,x⇤, f)p(f | X,y)df

predictive distribution of the 
latent variable (from regression)
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Class Prediction with a GP

The aim is to compute the predictive distribution 

we marginalize over the latent variables from the 
training data: 

we need the posterior over the latent variables:
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p(y⇤ = +1 | X,y,x⇤) =

Z
p(y⇤ | f⇤)p(f⇤ | X,y,x⇤)df⇤

p(f⇤ | X,y,x⇤) =

Z
p(f⇤ | X,x⇤, f)p(f | X,y)df

p(f | X,y) =
p(y | f)p(f | X)

p(y | X)

likelihood 
(sigmoid)

prior

normalizer
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A Simple Example

• Red: Two-class training data 

• Green: mean function of 

• Light blue: sigmoid of the mean function 
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p(f | X,y)
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But There Is A Problem...

• The likelihood term is not a Gaussian! 

• This means, we can not compute the posterior 
in closed form. 

• There are several different solutions in the 
literature, e.g.: 

•Laplace approximation 

•Expectation Propagation 

•Variational methods
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p(f | X,y) =
p(y | f)p(f | X)

p(y | X)



Now that we have                 we can compute:  

From the regression case we have:  

where 

This means we can use a particular property of 
Gaussians:

p(f | X,y)
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Predictions
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p(f⇤ | X,y,x⇤) =

Z
p(f⇤ | X,x⇤, f)p(f | X,y)df

⌃⇤ = k(x⇤,x⇤)� k

T
⇤ K

�1
k⇤

p(f⇤ | X,x⇤, f) = N (f⇤ | µ⇤,⌃⇤)

µ⇤ = kT
⇤ K

�1f

Linear in f
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A Convenient Gaussian Property

If we are given this: 

                  I. 

                  II. 

Then it follows (Bayes Rule for Gaussians): 

     III. 

     IV. 

where 
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p(x) = N (x | µ,⌃1)

p(y | x) = N (y | Ax+ b,⌃2)

p(y) = N (y | Aµ+ b,⌃2 +A⌃1A
T )

p(x | y) = N (x | ⌃(AT⌃�1
2 (y � b) + ⌃�1

1 y),⌃)

⌃ = (⌃�1
1 +AT⌃�1

s A)�1



V[f⇤ | X,y,x⇤] = k(x⇤,x⇤)� k

T
⇤ (K +W�1)�1

k⇤
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Applying this to Laplace

It remains to compute  

Depending on the kind of sigmoid function we 

• can compute this in closed form (cumulative 
Gaussian sigmoid) 

• have to use sampling methods or analytical 
approximations (logistic sigmoid)
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E[f⇤ | X,y,x⇤] = k(x⇤)
TK�1

f̂

p(y⇤ = +1 | X,y,x⇤) =

Z
p(y⇤ | f⇤)p(f⇤ | X,y,x⇤)df⇤
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A Simple Example

• Two-class problem (training data in red and blue) 

• Green line: optimal decision boundary 

• Black line: GP classifier decision boundary 

• Right: posterior probability
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Summary

• Gaussian Processes are Normal distributions 
over functions 

• To specify a GP we need a covariance function 
(kernel) and a mean function 

• For regression we can compute the predictive 
distribution in closed form 

• For classification, we use a sigmoid and have to 
approximate the latent posterior 

• More on Gaussian Processes: 
http://videolectures.net/epsrcws08_rasmussen_lgp/
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http://videolectures.net/epsrcws08_rasmussen_lgp/

