

Computer Vision Group Prof. Daniel Cremers

Technische Universität München

Machine Learning for Applications in Computer Vision

Tree-based Classifiers

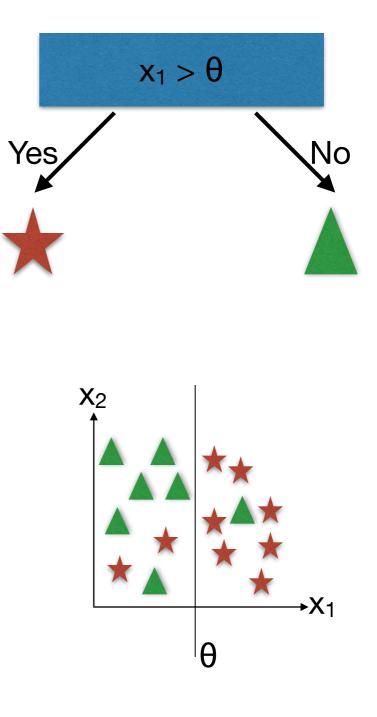
Decision Stump

- One level decision tree
- One internal node (root) connected to its terminal nodes (leaves)

• Goal:

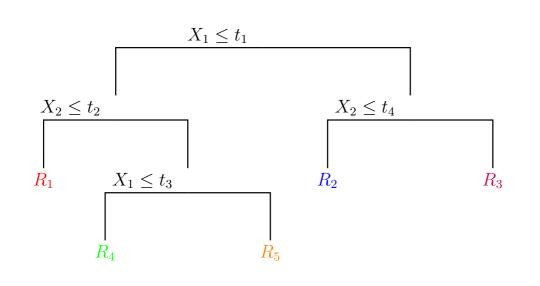
Find axis aligned hyper plane that minimises the class. error

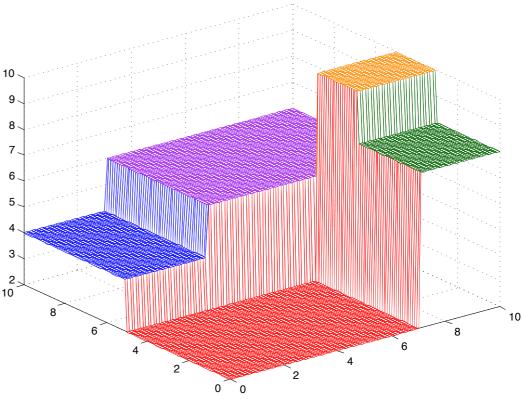
 Class. error is always better than random guessing (0.5)



Decision Trees

- Classification and Regression Trees (CART)
- Extension of Decision Stump
- Partition the input space recursively
- Define a label for each resulting region of the input space.





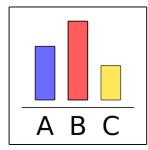
R. Triebel, P. Häusser, C. Hazirbas

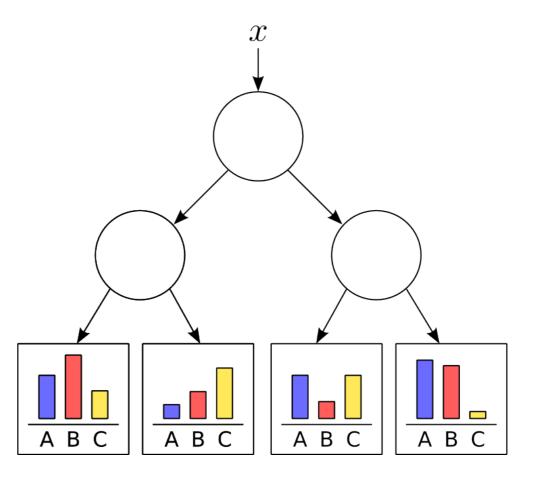
Decision Trees

- Regression: assign mean response to each leaf (piecewise constant surface)
- Classification: store the distribution over class labels in each leaf
 - Inner node:

$$\begin{array}{c} x \\ \theta \\ \theta \\ h(x,\theta) = 0 \quad h(x,\theta) = 1 \end{array}$$

• Leaf node:





Growing a Tree

- NP-Complete problem (NP: Non-deterministic Polynomial time)
- Solution is locally optimal
- Minimise a cost function to find the best feature and its best threshold on each node
- Split the data on each node based on the chosen feature and the threshold
- Stopping criteria for growing the tree
 - reduction of cost too small ?
 - maximum depth is reached ?
 - is the distribution in the subtrees homogenous ? (pure dist.)
 - is the number of samples in the subtrees too small ?

Growing a Tree

Regression cost:

$$\operatorname{cost}(D) = \sum_{i \in D} (y_i - \bar{y})^2$$

$$\bar{y} = \frac{1}{|D|} \sum_{i \in D} y_i$$

1

- Classification cost:
 - Misclassification rate:

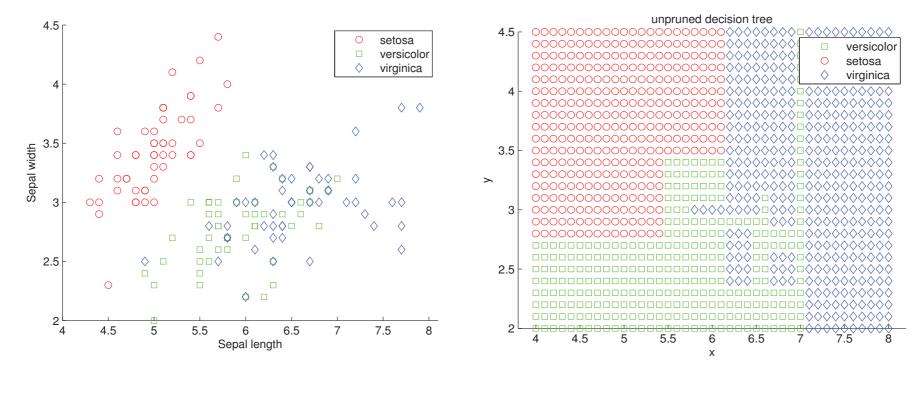
$$\frac{1}{|D|} \sum_{i \in D} |y_i \neq \hat{y}|$$

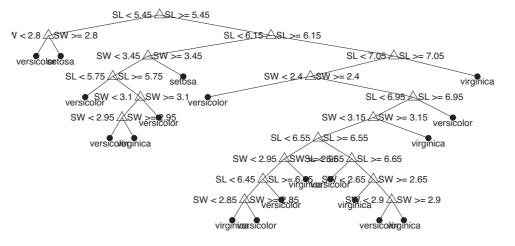
- Entropy:
 - same as maximising the information gain
- Gini Index:
 - expected error rate

$$\begin{split} H(\hat{P}) &= -\sum_{c=1}^{C} \hat{P}_c \log \hat{P}_c \\ 1 - \sum_{c} \hat{P}_c^2 \end{split}$$

Pruning a tree

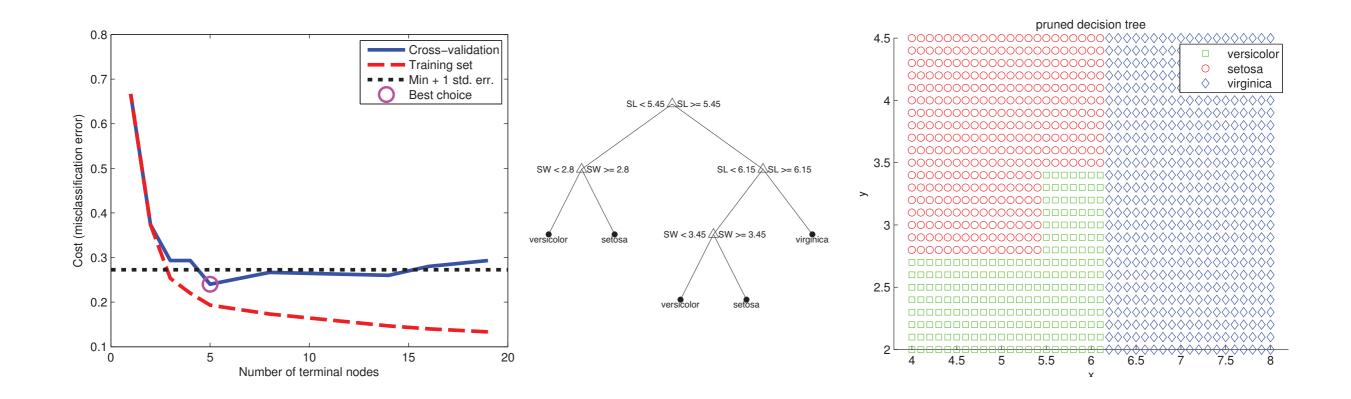
- Growing a tree too large yields overfitting
- Solution: build a full tree and then prune it





Pruning a tree

Growing a tree too large yields overfitting
Solution: build a full tree and then prune it



Pros (CART)

- easy to interpret
- can handle mixed discrete and cont. data
- insensitive to monotone transformations
- CART perform automatic variable selection
- relatively robust to outliers
- scale well to large datasets
- can be modified to handle missing inputs

Cons (CART)

- DO NOT predict very accurately
 - due to the greedy training procedure
- Trees are unstable
 - small change in the input might yield a large effect on the tree structure
- Trees are high variance estimators
 - Solution: Random Forests

Random Forests

- Reduce the variance of estimate by
 - Train M trees on different subsets of the data:

$$f(x) = \sum_{m}^{M} \frac{1}{M} f_m(x)$$

Ill highly correlated predictors

- Solution: Choose data as well as variable (feature) randomly
- Known as Random Forests. RF has a high accuracy and widely used in practical studies.

Random Forests

Real-Time Object Segmentation with Semantic Texton Forests

James Shotton (winner of CVPR 2008 Demo Prize)

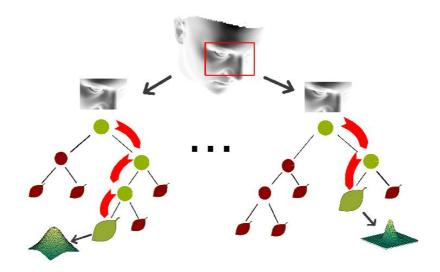
Real-Time Semantic Segmentation

Jamie Shotton Matthew Johnson Roberto Cipolla

Random Forests

Real Time Head Pose Estimation with Random Regression Forests

• Fanelli et al. (CVPR 2011)



• <u>https://www.youtube.com/watch?t=136&v=sxUkGGGtRBU</u>

R. Triebel, P. Häusser, C. Hazirbas