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Decision Stump

• One level decision tree 

• One internal node (root) 
connected to its terminal 
nodes (leaves) 

• Goal:  
Find axis aligned hyper plane 
that minimises the class. error 

• Class. error is always better than 
random guessing (0.5)
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Decision Trees

• Classification and Regression Trees (CART) 

• Extension of Decision Stump 

• Partition the input space recursively 

• Define a label for each resulting region of the input 
space.
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Decision Trees

• Regression: assign mean response to each leaf 
(piecewise constant surface) 

• Classification: store the distribution over class labels 
in each leaf 

•Inner node: 

•Leaf node:
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Decision tree

Decision trees are made from two elements.

1 Inner nodes:

2 Leaf nodes:
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Growing a Tree 

• NP-Complete problem (NP: Non-deterministic Polynomial time) 

• Solution is locally optimal 

• Minimise a cost function to find the best feature and its 
best threshold on each node 

• Split the data on each node based on the chosen 
feature and the threshold 

• Stopping criteria for growing the tree 

• reduction of cost too small ? 

• maximum depth is reached ? 

• is the distribution in the subtrees homogenous ? (pure dist.) 

• is the number of samples in the subtrees too small ?
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Growing a Tree 

• Regression cost: 

• Classification cost: 

•Misclassification rate: 

•Entropy: 

•same as maximising 
the information gain 

•Gini Index: 

•expected error rate
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Pruning a tree

• Growing a tree too large yields overfitting 

• Solution: build a full tree and then prune it
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Figure 16.4 (a) Iris data. We only show the first two features, sepal length and sepal width, and ignore
petal length and petal width. (b) Decision boundaries induced by the decision tree in Figure 16.5(a).
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Figure 16.5 (a) Unpruned decision tree for Iris data. (b) Plot of misclassification error rate vs depth of
tree. Figure generated by dtreeDemoIris.

16.2.3 Pruning a tree

To prevent overfitting, we can stop growing the tree if the decrease in the error is not sufficient
to justify the extra complexity of adding an extra subtree. However, this tends to be too myopic.
For example, on the xor data in Figure 14.2(c), it would might never make any splits, since each
feature on its own has little predictive power.

The standard approach is therefore to grow a “full” tree, and then to perform pruning. This
can be done using a scheme that prunes the branches giving the least increase in the error. See
(Breiman et al. 1984) for details.

To determine how far to prune back, we can evaluate the cross-validated error on each such
subtree, and then pick the tree whose CV error is within 1 standard error of the minimum. This
is illustrated in Figure 16.4(b). The point with the minimum CV error corresponds to the simple
tree in Figure 16.6(a).
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16.2.3 Pruning a tree

To prevent overfitting, we can stop growing the tree if the decrease in the error is not sufficient
to justify the extra complexity of adding an extra subtree. However, this tends to be too myopic.
For example, on the xor data in Figure 14.2(c), it would might never make any splits, since each
feature on its own has little predictive power.
The standard approach is therefore to grow a “full” tree, and then to perform pruning. This

can be done using a scheme that prunes the branches giving the least increase in the error. See
(Breiman et al. 1984) for details.
To determine how far to prune back, we can evaluate the cross-validated error on each such

subtree, and then pick the tree whose CV error is within 1 standard error of the minimum. This
is illustrated in Figure 16.4(b). The point with the minimum CV error corresponds to the simple
tree in Figure 16.6(a).
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Pruning a tree

• Growing a tree too large yields overfitting 

• Solution: build a full tree and then prune it
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Figure 16.6 Pruned decision tree for Iris data. Figure generated by dtreeDemoIris.

16.2.4 Pros and cons of trees

CART models are popular for several reasons: they are easy to interpret2, they can easily handle
mixed discrete and continuous inputs, they are insensitive to monotone transformations of the
inputs (because the split points are based on ranking the data points), they perform automatic
variable selection, they are relatively robust to outliers, they scale well to large data sets, and
they can be modified to handle missing inputs.3

However, CART models also have some disadvantages. The primary one is that they do
not predict very accurately compared to other kinds of model. This is in part due to the
greedy nature of the tree construction algorithm. A related problem is that trees are unstable:
small changes to the input data can have large effects on the structure of the tree, due to the
hierarchical nature of the tree-growing process, causing errors at the top to affect the rest of the
tree. In frequentist terminology, we say that trees are high variance estimators. We discuss a
solution to this below.

16.2.5 Random forests

One way to reduce the variance of an estimate is to average together many estimates. For
example, we can train M different trees on different subsets of the data, chosen randomly with

2. We can postprocess the tree to derive a series of logical rules such as “If x1 < 5.45 then ...” (Quinlan 1990).
3. The standard heuristic for handling missing inputs in decision trees is to look for a series of ”backup” variables,
which can induce a similar partition to the chosen variable at any given split; these can be used in case the chosen
variable is unobserved at test time. These are called surrogate splits. This method finds highly correlated features,
and can be thought of as learning a local joint model of the input. This has the advantage over a generative model
of not modeling the entire joint distribution of inputs, but it has the disadvantage of being entirely ad hoc. A simpler
approach, applicable to categorical variables, is to code “missing” as a new value, and then to treat the data as fully
observed.
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16.2.3 Pruning a tree

To prevent overfitting, we can stop growing the tree if the decrease in the error is not sufficient
to justify the extra complexity of adding an extra subtree. However, this tends to be too myopic.
For example, on the xor data in Figure 14.2(c), it would might never make any splits, since each
feature on its own has little predictive power.

The standard approach is therefore to grow a “full” tree, and then to perform pruning. This
can be done using a scheme that prunes the branches giving the least increase in the error. See
(Breiman et al. 1984) for details.

To determine how far to prune back, we can evaluate the cross-validated error on each such
subtree, and then pick the tree whose CV error is within 1 standard error of the minimum. This
is illustrated in Figure 16.4(b). The point with the minimum CV error corresponds to the simple
tree in Figure 16.6(a).
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Pros (CART)

•easy to interpret 

•can handle mixed discrete and cont. data 

•insensitive to monotone transformations 

•CART perform automatic variable selection 

•relatively robust to outliers 

•scale well to large datasets 

•can be modified to handle missing inputs
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Cons (CART)

•DO NOT predict very accurately 

•due to the greedy training procedure 

•Trees are unstable 

•small change in the input might yield a large effect on the tree 
structure 

•Trees are high variance estimators 

•Solution: Random Forests

10
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Random Forests

• Reduce the variance of estimate by  

•Train M trees on different subsets of the data: 

•!!! highly correlated predictors  

•Solution: Choose data as well as variable (feature) 
randomly 

• Known as Random Forests. RF has a high accuracy 
and widely used in practical studies. 
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Random Forests

• Real-Time Object Segmentation with Semantic 
Texton Forests 

• James Shotton (winner of CVPR 2008 Demo Prize)
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Random Forests

•Real Time Head Pose Estimation with Random 
Regression Forests 

•  Fanelli et al. (CVPR 2011) 

• https://www.youtube.com/watch?t=136&v=sxUkGGGtRBU
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