
Fenchel-Young Inequality

By definition
E∗(p) = sup

u
〈u, p〉 − E(u),

such that the inequality immediately follows. Left to show is the equality statement. We have one
inequality, such that we need

E(u) + E∗(p) ≤ 〈u, p〉,

or, in other words,
E(u) + 〈p, z〉 − E(z) ≤ 〈u, p〉, ∀z.

Rewritten, the above is nothing but

E(z)− E(u)− 〈p, z − u〉 ≥ 0, ∀z,

or p ∈ ∂E(u).

Biconjugate

We’ll do an incomplete proof (e.g. limiting ourselves to the relative interior), just to give an intuition on
why the statement makes sense.

It always holds that

E∗∗(u) = sup
p
〈p, u〉 − E∗(p) ≤ sup

p
〈p, u〉 − (〈p, u〉 − E(u)) = E(u),

by the Fenchel-Young Inequality.
If E is subdifferentiable at E, let q ∈ ∂E(u). We readily obtain

E∗∗(u) = sup
p
〈p, u〉 − E∗(p) ≥ 〈q, u〉 − E∗(q) = E(u),

by the equality of the Fenchel-Young Inequality. In combination with E∗∗(u) ≤ E(u) as shown above,
this yields E∗∗(u) = E(u).

Subgradient of convex conjugate

Let p ∈ ∂E(u). By the Fenchel-Young Inequality we know that

E(u) + E∗(p) = 〈u, p〉.

On the other hand, E = E∗∗ such that

E∗∗(u) + E∗(p) = 〈u, p〉,

and the Fenchel-Young Inequality tells us that u ∈ ∂E∗(p). Similarly, u ∈ ∂E∗(p) implies p ∈ ∂E(u).
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Fenchel’s Duality Theorem

By the Fenchel-Young Inequality we know that

H(u) + R(Ku) ≥ 〈q, u〉+ 〈p,Ku〉 −H∗(q)−R∗(p)

for all p, q. Now choose q = −KT p to obtain

H(u) + R(Ku) ≥ −H∗(−KT p)−R∗(p)

for all p. Now we know that equality holds if q = −KT p ∈ ∂H(u) and p ∈ ∂R(Ku). This implies that

0 = −KT p + KT p ∈ ∂H(u) + KT∂R(Ku)

which is the optimality condition for minimizing H(u) +R(Ku). On the other hand q = −KT p ∈ ∂H(u)
and p ∈ ∂R(Ku) means u ∈ ∂H∗(−KT p) and Ku ∈ ∂R(p) such that

0 = Ku−Ku ∈ −K∂H∗(−KT p)− ∂R(p),

which is the optimality condition for maximizing −H∗(−KT p)−R(p).
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