Fenchel-Young Inequality

By definition

$$E^*(p) = \sup_{u} \langle u, p \rangle - E(u),$$

such that the inequality immediately follows. Left to show is the equality statement. We have one inequality, such that we need

$$E(u) + E^*(p) \le \langle u, p \rangle,$$

or, in other words,

$$E(u) + \langle p, z \rangle - E(z) \le \langle u, p \rangle, \ \forall z.$$

Rewritten, the above is nothing but

$$E(z) - E(u) - \langle p, z - u \rangle \ge 0, \ \forall z,$$

or $p \in \partial E(u)$.

Biconjugate

We'll do an incomplete proof (e.g. limiting ourselves to the relative interior), just to give an intuition on why the statement makes sense.

It always holds that

$$E^{**}(u) = \sup_{p} \langle p, u \rangle - E^{*}(p) \le \sup_{p} \langle p, u \rangle - (\langle p, u \rangle - E(u)) = E(u),$$

by the Fenchel-Young Inequality.

If E is subdifferentiable at E, let $q \in \partial E(u)$. We readily obtain

$$E^{**}(u) = \sup_{p} \langle p, u \rangle - E^*(p) \ge \langle q, u \rangle - E^*(q) = E(u),$$

by the equality of the Fenchel-Young Inequality. In combination with $E^{**}(u) \leq E(u)$ as shown above, this yields $E^{**}(u) = E(u)$.

Subgradient of convex conjugate

Let $p \in \partial E(u)$. By the Fenchel-Young Inequality we know that

$$E(u) + E^*(p) = \langle u, p \rangle.$$

On the other hand, $E = E^{**}$ such that

$$E^{**}(u) + E^*(p) = \langle u, p \rangle,$$

and the Fenchel-Young Inequality tells us that $u \in \partial E^*(p)$. Similarly, $u \in \partial E^*(p)$ implies $p \in \partial E(u)$.

Fenchel's Duality Theorem

By the Fenchel-Young Inequality we know that

$$H(u) + R(Ku) \ge \langle q, u \rangle + \langle p, Ku \rangle - H^*(q) - R^*(p)$$

for all p, q. Now choose $q = -K^T p$ to obtain

$$H(u) + R(Ku) \ge -H^*(-K^T p) - R^*(p)$$

for all p. Now we know that equality holds if $q = -K^T p \in \partial H(u)$ and $p \in \partial R(Ku)$. This implies that

$$0 = -K^T p + K^T p \in \partial H(u) + K^T \partial R(Ku)$$

which is the optimality condition for minimizing H(u)+R(Ku). On the other hand $q=-K^Tp\in\partial H(u)$ and $p\in\partial R(Ku)$ means $u\in\partial H^*(-K^Tp)$ and $Ku\in\partial R(p)$ such that

$$0 = Ku - Ku \in -K\partial H^*(-K^T p) - \partial R(p),$$

which is the optimality condition for maximizing $-H^*(-K^Tp) - R(p)$.