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Variational Problems

Example: Inpainting

û = arg min
u∈Rn

∥∥∥∥√(Dxu)2 + (Dy u)2

∥∥∥∥
1
, such that ui = fi ∀i ∈ I

with index set I of uncorrupted pixels.
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Variational Problems

Let us repeat some basics things to talk about

û = arg min
u∈Rn

E(u).

Definition

• For E : Rn → R ∪ {∞}, we call

dom(E) := {u ∈ Rn | E(u) <∞}

the domain of E .
• We call E proper if dom(E) 6= ∅.
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û = arg min
u∈Rn

E(u).

Definition

• For E : Rn → R ∪ {∞}, we call

dom(E) := {u ∈ Rn | E(u) <∞}

the domain of E .
• We call E proper if dom(E) 6= ∅.



Convex Analysis

Michael Moeller

Basics
Convexity

Existence

Uniqueness

The Subdifferential

updated 14.04.2015

Variational Problems

Definition: Convex Function

We call E : Rn → R ∪ {∞} a convex function if

1 dom(E) is a convex set, i.e. for all u, v ∈ dom(E) and all
θ ∈ [0,1] it holds that θu + (1− θ)v ∈ dom(E).

2 For all u, v ∈ dom(E) and all θ ∈ [0,1] it holds that

E(θu + (1− θ)v) ≤ θE(u) + (1− θ)E(v)

We call E strictly convex, if the inequality in 2 is strict for all
θ ∈]0,1[, and v 6= u.
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Variational Problems

Example: Inpainting

û = arg min
u∈Rn

∥∥∥∥√(Dxu)2 + (Dy u)2

∥∥∥∥
1
, such that ui = fi ∀i ∈ I

with index set I of uncorrupted pixels.
→ Discuss convexity.
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Variational Problems

When does
û = arg min

u∈Rn
E(u)

exist?

• E is lower semi-continuous, i.e. for all u

lim inf
v→u

E(v) ≥ E(u)

holds.
• There exists an α such that

{u | E(u) ≤ α}

is non-empty and bounded.

Proof: Board.
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Variational Problems

Fundamental Theorem of Optimization

If E : Rn → R ∪ {∞} is lower semi-continuous and has a
nonempty bounded sublevelset, then there exists

û = arg min
u∈Rn

E(u)

Remark: For a proper convex function, lower semi-continuity is
the same as the closedness of the sublevelsets.

Examples on the board:
• A convex continuous function that does not have a

minimizer
• A convex function with bounded sublevelsets that does not

have a minimizer
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û = arg min
u∈Rn

E(u)
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Variational Problems

Continuity of Convex Functions

If E : Rn → R ∪ {∞} is convex, then E is locally Lipschitz (and
hence continuous) on int(dom(E)).

Proof: Exercise (in 1d)

Board: Considering the interior is important!

Conclusion

If E : Rn → R is convex, then E is continuous.
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Variational Problems

Definition

We call E : Rn → R ∪ {∞} coercive, if all sequences (un)n with
‖un‖ → ∞ meet E(un)→∞.

Theorem

If E : Rn → R is convex and coercive, then there exists

û = arg min
u∈Rn

E(u).
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Variational Problems

When is
û = arg min

u∈Rn
E(u)

unique?

Theorem

If E : Rn → R ∪ {∞} is convex, then any local minimum is a
global minimum. If E is strictly convex, the global minimum is
unique.
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Variational Problems
What is an optimality condition for

û = arg min
u∈Rn

E(u)?

Definition: Subdifferential

We call

∂E(u) = {p ∈ Rn | E(v)− E(u)− 〈p, v − u〉 ≥ 0}

the subdifferential of E at u.
• Elements of ∂E(u) are called subgradients.
• If ∂E(u) 6= ∅, we call E subdifferentiable at E .
• By convention, ∂E(u) = ∅ for u 6= dom(E).

Theorem: Optimality condition

Let 0 ∈ ∂E(û). Then û ∈ arg minu E(u).
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Variational Problems

Examples:
• The `1 norm.

• Functional

E(u) =
{

0 if u ≥ 0
∞ else.
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Variational Problems

Definition: Relative Interior

The relative interior of a convex set M is defined as

ri(M) := {x ∈ M | ∀y ∈ M, ∃λ > 1, s.t. λx + (1− λ)y ∈ M}

Theorem

If E is a proper convex function and u ∈ ri(dom(E)), then
∂E(u) is not empty.
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Variational Problems

Theorem: Sum rule

Let E1, E2 be convex functions such that

ri(dom(E1)) ∩ ri(dom(E2)) 6= ∅,

then it holds that

∂(E1 + E2)(u) = ∂E1(u) + ∂E2(u).

Example: Minimize (u − f )2 + ιu≥0(u).

Example: Minimize 0.5(u − f )2 + α|u|.
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Variational Problems

Theorem: Chain rule

If A ∈ Rm×n, E : Rm → R ∪ {∞} is convex, and
ri(dom(E)) ∩ range(A) 6= ∅, then

∂(E ◦ A)(u) = A∗∂E(Au)

Example: Minimize ‖Au − f‖2
2.
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