Convex Analysis

Michael Moeller

Chapter 1 Convex Analysis

Nonlinear Multiscale Methods for Image and Signal Analysis SS 2015

Basics

Convexity Existence Uniqueness The Subdifferential

Michael Moeller Computer Vision Department of Computer Science TU München

Example: Inpainting

This image is corrupted because someone v image is corrupted because someone wrote corrupted because someone wrote this stup because someone wrote this stupid text on someone wrote this stupid text on top of it wrote this stupid text on top of it. This image this stupid text on top of it. This image is corrup text on top of it. This image is corrupted be top of it. This image is corrupted because as This image is corrupted because someone w image is corrupted because someone wrote corrupted because someone wrote this stup because someone wrote this stupid text on someone wrote this stupid text on top of it wrote this stupid text on top of it. This image this stupid text on top of it. This image is corruptext on top of it. This image is corrupted be top of it. This image is corrupted because as tops it. This image is corrupted because as **Convex Analysis**

Michael Moeller

Basics Convexity Existence Uniqueness The Subdifferential

$$\hat{u} = \arg\min_{u\in\mathbb{R}^n} \left\|\sqrt{(D_x u)^2 + (D_y u)^2}\right\|_1,$$

such that
$$u_i = f_i \ \forall i \in I$$

with index set I of uncorrupted pixels.

Example: Inpainting

This image is corrupted because someone v image is corrupted because someone wrote corrupted because someone wrote this stuj because someone wrote this stupid text on someone wrote this stupid text on top of it wrote this stupid text on top of it. This image this stupid text on top of it. This image is corrup text on top of it. This image is corrupted be top of it. This image is corrupted because so

Convex Analysis

Michael Moeller

Basics Convexity Existence Uniqueness The Subdifferential

$$\hat{u} = \arg\min_{u\in\mathbb{R}^n} \left\|\sqrt{(D_x u)^2 + (D_y u)^2}\right\|_1,$$

such that
$$u_i = f_i \ \forall i \in I$$

with index set I of uncorrupted pixels.

Convex Analysis

Michael Moeller

Basics Convexity Existence Uniqueness The Subdifferential

Convexity

Let us repeat some basics things to talk about

$$\hat{u} = \arg\min_{u\in\mathbb{R}^n} E(u).$$

Michael Moeller

Let us repeat some basics things to talk about

$$\hat{u} = \arg\min_{u \in \mathbb{R}^n} E(u).$$

Definition

• For
$$E : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$$
, we call

$$\mathsf{dom}(E) := \{ u \in \mathbb{R}^n \mid E(u) < \infty \}$$

the domain of E.

• We call *E* proper if dom(*E*) $\neq \emptyset$.

Basics Convexity Existence Uniqueness The Subdifferential

Convex Analysis

Michael Moeller

Definition: Convex Function

We call $E : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ a convex function if

• dom(*E*) is a convex set, i.e. for all $u, v \in \text{dom}(E)$ and all $\theta \in [0, 1]$ it holds that $\theta u + (1 - \theta)v \in \text{dom}(E)$.

2 For all $u, v \in \text{dom}(E)$ and all $\theta \in [0, 1]$ it holds that

$$E(\theta u + (1 - \theta)v) \le \theta E(u) + (1 - \theta)E(v)$$

We call *E* strictly convex, if the inequality in 2 is strict for all $\theta \in]0, 1[$, and $v \neq u$.

Convex Analysis

Michael Moeller

Example: Inpainting

This image is corrupted because someone w image is corrupted because someone wrote corrupted because someone wrote this stup because someone wrote this stupid text on someone wrote this stupid text on top of it wrote this stupid text on top of it. This image this stupid text on top of it. This image is costupid text on top of it. This image is corruptext on top of it. This image is corrupted be top of it. This image is corrupted be top of it. This image is corrupted be

Convex Analysis

Michael Moeller

Basics Convexity Existence Uniqueness The Subdifferential

$$\hat{u} = \arg\min_{u\in\mathbb{R}^n}\left\|\sqrt{(D_x u)^2 + (D_y u)^2}\right\|_1,$$

such that
$$u_i = f_i \ \forall i \in I$$

with index set I of uncorrupted pixels.

 \rightarrow Discuss convexity.

Convex Analysis

Michael Moeller

Basics Convexity Existence Uniqueness

The Subdifferential

Existence

Convex Analysis

Michael Moeller

Basics

Convexity

Existence

Uniqueness

The Subdifferential

When does

 $\hat{u} = \arg\min_{u \in \mathbb{R}^n} E(u)$

exist?

When does

 $\hat{u} = \arg\min_{u \in \mathbb{R}^n} E(u)$

exist?

• E is lower semi-continuous, i.e. for all u

 $\liminf_{v\to u} E(v) \geq E(u)$

holds.

• There exists an α such that

$$\{\boldsymbol{u} \mid \boldsymbol{E}(\boldsymbol{u}) \leq \alpha\}$$

is non-empty and bounded.

Proof: Board.

Michael Moeller

Fundamental Theorem of Optimization

If $E : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is lower semi-continuous and has a nonempty bounded sublevelset, then there exists

$$\hat{u} = \arg\min_{u\in\mathbb{R}^n} E(u)$$

Convex Analysis

Michael Moeller

Fundamental Theorem of Optimization

If $E : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is lower semi-continuous and has a nonempty bounded sublevelset, then there exists

$$\hat{u} = \arg\min_{u \in \mathbb{R}^n} E(u)$$

Remark: For a proper convex function, lower semi-continuity is the same as the closedness of the sublevelsets.

Convex Analysis

Michael Moeller

Fundamental Theorem of Optimization

If $E : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is lower semi-continuous and has a nonempty bounded sublevelset, then there exists

$$\hat{u} = \arg\min_{u\in\mathbb{R}^n} E(u)$$

Remark: For a proper convex function, lower semi-continuity is the same as the closedness of the sublevelsets.

Examples on the board:

- A convex continuous function that does not have a minimizer
- A convex function with bounded sublevelsets that does not have a minimizer

Convex Analysis

Michael Moeller

Continuity of Convex Functions

If $E : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is convex, then *E* is locally Lipschitz (and hence continuous) on int(dom(*E*)).

Proof: Exercise (in 1d)

Board: Considering the interior is important!

Convex Analysis

Michael Moeller

Continuity of Convex Functions

If $E : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is convex, then *E* is locally Lipschitz (and hence continuous) on int(dom(*E*)).

Proof: Exercise (in 1d)

Board: Considering the interior is important!

Conclusion

If $E : \mathbb{R}^n \to \mathbb{R}$ is convex, then *E* is continuous.

Convex Analysis

Michael Moeller

Definition

We call $E : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ coercive, if all sequences $(u_n)_n$ with $||u_n|| \to \infty$ meet $E(u_n) \to \infty$.

Theorem

If $E : \mathbb{R}^n \to \mathbb{R}$ is convex and coercive, then there exists

$$\hat{u} = \arg\min_{u\in\mathbb{R}^n} E(u).$$

Convex Analysis

Michael Moeller

When is

$$\hat{u} = \arg\min_{u \in \mathbb{R}^n} E(u)$$

unique?

Michael Moeller

Basics

Convexity

Existence

Uniqueness

When is

$$\hat{u} = rg\min_{u \in \mathbb{R}^n} E(u)$$

unique?

Theorem

If $E : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is convex, then any local minimum is a global minimum. If *E* is strictly convex, the global minimum is unique.

Convex Analysis

Michael Moeller

Basics

Convexity

Existence

Uniqueness

Convex Analysis

Michael Moeller

Basics Convexity

Existence

Uniqueness

The Subdifferential

Subdifferential Calculus

What is an optimality condition for

$$\hat{u} = \arg\min_{u \in \mathbb{R}^n} E(u)?$$

Convex Analysis

Michael Moeller

Basics

Convexity

Existence

Uniqueness

What is an optimality condition for

$$\hat{u} = \arg\min_{u\in\mathbb{R}^n} E(u)?$$

Definition: Subdifferential

We call

$$\partial E(u) = \{ p \in \mathbb{R}^n \mid E(v) - E(u) - \langle p, v - u \rangle \ge 0 \}$$

the subdifferential of E at u.

- Elements of $\partial E(u)$ are called subgradients.
- If $\partial E(u) \neq \emptyset$, we call *E* subdifferentiable at *E*.
- By convention, $\partial E(u) = \emptyset$ for $u \neq \text{dom}(E)$.

Convex Analysis

Michael Moeller

Basics

Convexity

Existence

Uniqueness

What is an optimality condition for

$$\hat{u} = \arg\min_{u\in\mathbb{R}^n} E(u)?$$

Definition: Subdifferential

We call

$$\partial E(u) = \{ p \in \mathbb{R}^n \mid E(v) - E(u) - \langle p, v - u \rangle \ge 0 \}$$

the subdifferential of E at u.

- Elements of $\partial E(u)$ are called subgradients.
- If $\partial E(u) \neq \emptyset$, we call *E* subdifferentiable at *E*.
- By convention, $\partial E(u) = \emptyset$ for $u \neq \text{dom}(E)$.

Theorem: Optimality condition

Let $0 \in \partial E(\hat{u})$. Then $\hat{u} \in \arg \min_{u} E(u)$.

Convex Analysis

Michael Moeller

Basics

Convexity

Existence

Uniqueness

Convex Analysis

Michael Moeller

Basics

Convexity

Existence

Uniqueness

The Subdifferential

Examples:

• The ℓ^1 norm.

Convex Analysis

Michael Moeller

Basics Convexity

Existence

Uniqueness

The Subdifferential

Examples:

- The ℓ^1 norm.
- Functional

$$E(u) = \left\{ egin{array}{cc} 0 & ext{if } u \geq 0 \ \infty & ext{else.} \end{array}
ight.$$

Definition: Relative Interior

The *relative interior* of a convex set *M* is defined as

 $\mathsf{ri}(M) := \{ x \in M \mid \forall y \in M, \exists \lambda > 1, \text{ s.t. } \lambda x + (1 - \lambda)y \in M \}$

Convex Analysis

Michael Moeller

Basics

Convexity

Existence

Uniqueness

Definition: Relative Interior

The *relative interior* of a convex set *M* is defined as

$$\mathsf{ri}(M) := \{ x \in M \mid \forall y \in M, \exists \lambda > 1, \text{ s.t. } \lambda x + (1 - \lambda)y \in M \}$$

Theorem

If *E* is a proper convex function and $u \in ri(dom(E))$, then $\partial E(u)$ is not empty.

Convex Analysis

Michael Moeller

Basics

Convexity

Existence

Uniqueness

Theorem: Sum rule

Let E_1 , E_2 be convex functions such that

 $ri(dom(E_1)) \cap ri(dom(E_2)) \neq \emptyset$,

then it holds that

 $\partial(E_1+E_2)(u)=\partial E_1(u)+\partial E_2(u).$

Convex Analysis

Michael Moeller

Basics Convexity

Existence

Uniqueness

Theorem: Sum rule

Let E_1 , E_2 be convex functions such that

 $ri(dom(E_1)) \cap ri(dom(E_2)) \neq \emptyset$,

then it holds that

 $\partial(E_1+E_2)(u)=\partial E_1(u)+\partial E_2(u).$

Example: Minimize $(u - f)^2 + \iota_{u \ge 0}(u)$.

Convex Analysis

Michael Moeller

Basics Convexity Existence Uniqueness

Theorem: Sum rule

Let E_1 , E_2 be convex functions such that

 $\mathsf{ri}(\mathsf{dom}(E_1))\cap\mathsf{ri}(\mathsf{dom}(E_2))\neq \emptyset,$

then it holds that

$$\partial(E_1+E_2)(u)=\partial E_1(u)+\partial E_2(u)$$

Example: Minimize $(u - f)^2 + \iota_{u \ge 0}(u)$. Example: Minimize $0.5(u - f)^2 + \alpha |u|$.

Convex Analysis

Michael Moeller

Basics Convexity Existence Uniqueness

Convex Analysis

Michael Moeller

Basics

Convexity

Existence

Uniqueness

The Subdifferential

Theorem: Chain rule

If $A \in \mathbb{R}^{m \times n}$, $E : \mathbb{R}^m \to \mathbb{R} \cup \{\infty\}$ is convex, and $ri(dom(E)) \cap range(A) \neq \emptyset$, then

 $\partial(E \circ A)(u) = A^* \partial E(Au)$

Convex Analysis

Michael Moeller

Basics

Convexity

Existence

Uniqueness

The Subdifferential

Theorem: Chain rule

If $A \in \mathbb{R}^{m \times n}$, $E : \mathbb{R}^m \to \mathbb{R} \cup \{\infty\}$ is convex, and $ri(dom(E)) \cap range(A) \neq \emptyset$, then

 $\partial(E \circ A)(u) = A^* \partial E(Au)$

Example: Minimize $||Au - f||_2^2$.

updated 14.04.2015