Chapter 1
 Convex Analysis

Nonlinear Multiscale Methods for Image and Signal Analysis SS 2015

Basics

Convexity
Existence
Uniqueness
The Subdifferential

Michael Moeller
Computer Vision
Department of Computer Science
TU München

Variational Problems

Example: Inpainting

This image is corrupted because someone v image is corrupted because someone wrote corrupted because someone wrote this stup because someone wrote this stupid text on someone wrote this stupid text on top of it wrote this stupid text on top of it. This imas this stupid text on top of it. This image is $c c$ stupid text on top of it. This image is corruF text on top of it. This image is corrupted be top of it. This image is corrupted because sc This imaoe is rnerrinted herance enmenne is

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}}\left\|\sqrt{\left(D_{x} u\right)^{2}+\left(D_{y} u\right)^{2}}\right\|_{1}, \quad \text { such that } u_{i}=f_{i} \forall i \in I
$$

with index set I of uncorrupted pixels.

Variational Problems

Example: Inpainting

Basics

Convexity
Existence
Uniqueness
The Subdifferential

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}}\left\|\sqrt{\left(D_{x} u\right)^{2}+\left(D_{y} u\right)^{2}}\right\|_{1}, \quad \text { such that } u_{i}=f_{i} \forall i \in I
$$

with index set I of uncorrupted pixels.

Convexity

Variational Problems

Let us repeat some basics things to talk about

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u) .
$$

Basics
Convexity
Existence
Uniqueness
The Subdifferential

Variational Problems

Let us repeat some basics things to talk about

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u) .
$$

Definition

- For $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$, we call

$$
\operatorname{dom}(E):=\left\{u \in \mathbb{R}^{n} \mid E(u)<\infty\right\}
$$

the domain of E.

- We call E proper if $\operatorname{dom}(E) \neq \emptyset$.

Variational Problems

Definition: Convex Function

We call $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ a convex function if
(1) $\operatorname{dom}(E)$ is a convex set, i.e. for all $u, v \in \operatorname{dom}(E)$ and all $\theta \in[0,1]$ it holds that $\theta u+(1-\theta) v \in \operatorname{dom}(E)$.
(2) For all $u, v \in \operatorname{dom}(E)$ and all $\theta \in[0,1]$ it holds that

$$
E(\theta u+(1-\theta) v) \leq \theta E(u)+(1-\theta) E(v)
$$

We call E strictly convex, if the inequality in 2 is strict for all $\theta \in] 0,1[$, and $v \neq u$.

Variational Problems

Example: Inpainting

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}}\left\|\sqrt{\left(D_{x} u\right)^{2}+\left(D_{y} u\right)^{2}}\right\|_{1}, \quad \text { such that } u_{i}=f_{i} \forall i \in I
$$

with index set / of uncorrupted pixels.
\rightarrow Discuss convexity.

Existence

Basics

Convexity
Existence
Uniqueness
The Subdifferential

Variational Problems

When does

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u)
$$

exist?

Basics

Convexity
Existence
Uniqueness
The Subdifferential

Variational Problems

When does

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u)
$$

exist?

- E is lower semi-continuous, i.e. for all u

$$
\liminf _{v \rightarrow u} E(v) \geq E(u)
$$

holds.

- There exists an α such that

$$
\{u \mid E(u) \leq \alpha\}
$$

is non-empty and bounded.
Proof: Board.

Variational Problems

Fundamental Theorem of Optimization

If $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is lower semi-continuous and has a nonempty bounded sublevelset, then there exists

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u)
$$

Variational Problems

Fundamental Theorem of Optimization

If $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is lower semi-continuous and has a nonempty bounded sublevelset, then there exists

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u)
$$

Remark: For a proper convex function, lower semi-continuity is the same as the closedness of the sublevelsets.

Variational Problems

Fundamental Theorem of Optimization

If $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is lower semi-continuous and has a nonempty bounded sublevelset, then there exists

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u)
$$

Remark: For a proper convex function, lower semi-continuity is the same as the closedness of the sublevelsets.

Examples on the board:

- A convex continuous function that does not have a minimizer
- A convex function with bounded sublevelsets that does not have a minimizer

Variational Problems

Continuity of Convex Functions

If $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is convex, then E is locally Lipschitz (and hence continuous) on $\operatorname{int}(\operatorname{dom}(E))$.

Basics

Convexity
Existence
Uniqueness
The Subdifferential

Proof: Exercise (in 1d)

Board: Considering the interior is important!

Variational Problems

Continuity of Convex Functions
 If $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is convex, then E is locally Lipschitz (and hence continuous) on $\operatorname{int}(\operatorname{dom}(E))$.

Proof: Exercise (in 1d)

Board: Considering the interior is important!

Conclusion

If $E: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex, then E is continuous.

Variational Problems

Definition

We call $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ coercive, if all sequences $\left(u_{n}\right)_{n}$ with $\left\|u_{n}\right\| \rightarrow \infty$ meet $E\left(u_{n}\right) \rightarrow \infty$.

Basics

Convexity
Existence
Uniqueness
The Subdifferential

Theorem

If $E: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and coercive, then there exists

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u) .
$$

Variational Problems

When is $\quad \hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u)$
unique?

Variational Problems

When is

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u)
$$

Theorem

If $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is convex, then any local minimum is a global minimum. If E is strictly convex, the global minimum is unique.

Subdifferential Calculus

Variational Problems

What is an optimality condition for

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u) ?
$$

Variational Problems

What is an optimality condition for

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u) ?
$$

Definition: Subdifferential

We call

$$
\partial E(u)=\left\{p \in \mathbb{R}^{n} \mid E(v)-E(u)-\langle p, v-u\rangle \geq 0\right\}
$$

the subdifferential of E at u.

- Elements of $\partial E(u)$ are called subgradients.
- If $\partial E(u) \neq \emptyset$, we call E subdifferentiable at E.
- By convention, $\partial E(u)=\emptyset$ for $u \neq \operatorname{dom}(E)$.

Variational Problems

What is an optimality condition for

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u) ?
$$

Definition: Subdifferential

We call

$$
\partial E(u)=\left\{p \in \mathbb{R}^{n} \mid E(v)-E(u)-\langle p, v-u\rangle \geq 0\right\}
$$

the subdifferential of E at u.

- Elements of $\partial E(u)$ are called subgradients.
- If $\partial E(u) \neq \emptyset$, we call E subdifferentiable at E.
- By convention, $\partial E(u)=\emptyset$ for $u \neq \operatorname{dom}(E)$.

Theorem: Optimality condition

Let $0 \in \partial E(\hat{u})$. Then $\hat{u} \in \arg \min _{u} E(u)$.

Variational Problems

Examples:

- The ℓ^{1} norm.

Variational Problems

Examples:

- The ℓ^{1} norm.
- Functional

$$
E(u)=\left\{\begin{array}{cc}
0 & \text { if } u \geq 0 \\
\infty & \text { else }
\end{array}\right.
$$

Variational Problems

Definition: Relative Interior

The relative interior of a convex set M is defined as

$$
\operatorname{ri}(M):=\{x \in M \mid \forall y \in M, \exists \lambda>1, \text { s.t. } \lambda x+(1-\lambda) y \in M\}
$$

Variational Problems

Definition: Relative Interior

$$
\operatorname{ri}(M):=\{x \in M \mid \forall y \in M, \exists \lambda>1, \text { s.t. } \lambda x+(1-\lambda) y \in M\}
$$

Theorem

If E is a proper convex function and $u \in \operatorname{ri}(\operatorname{dom}(E))$, then $\partial E(u)$ is not empty.

Variational Problems

Theorem: Sum rule

Let E_{1}, E_{2} be convex functions such that

$$
\operatorname{ri}\left(\operatorname{dom}\left(E_{1}\right)\right) \cap \operatorname{ri}\left(\operatorname{dom}\left(E_{2}\right)\right) \neq \emptyset,
$$

then it holds that

$$
\partial\left(E_{1}+E_{2}\right)(u)=\partial E_{1}(u)+\partial E_{2}(u) .
$$

Variational Problems

Theorem: Sum rule

Let E_{1}, E_{2} be convex functions such that

$$
\operatorname{ri}\left(\operatorname{dom}\left(E_{1}\right)\right) \cap \operatorname{ri}\left(\operatorname{dom}\left(E_{2}\right)\right) \neq \emptyset,
$$

then it holds that

$$
\partial\left(E_{1}+E_{2}\right)(u)=\partial E_{1}(u)+\partial E_{2}(u) .
$$

Example: Minimize $(u-f)^{2}+\iota_{u \geq 0}(u)$.

Variational Problems

Theorem: Sum rule

Let E_{1}, E_{2} be convex functions such that

$$
\operatorname{ri}\left(\operatorname{dom}\left(E_{1}\right)\right) \cap \operatorname{ri}\left(\operatorname{dom}\left(E_{2}\right)\right) \neq \emptyset,
$$

then it holds that

$$
\partial\left(E_{1}+E_{2}\right)(u)=\partial E_{1}(u)+\partial E_{2}(u) .
$$

Example: Minimize $(u-f)^{2}+\iota_{u \geq 0}(u)$.
Example: Minimize $0.5(u-f)^{2}+\alpha|u|$.

Variational Problems

Theorem: Chain rule

If $A \in \mathbb{R}^{m \times n}, E: \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{\infty\}$ is convex, and ri $(\operatorname{dom}(E)) \cap \operatorname{range}(A) \neq \emptyset$, then

$$
\partial(E \circ A)(u)=A^{*} \partial E(A u)
$$

Variational Problems

Theorem: Chain rule

If $A \in \mathbb{R}^{m \times n}, E: \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{\infty\}$ is convex, and ri $(\operatorname{dom}(E)) \cap \operatorname{range}(A) \neq \emptyset$, then

$$
\partial(E \circ A)(u)=A^{*} \partial E(A u)
$$

Example: Minimize $\|A u-f\|_{2}^{2}$.

