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Example: Inpainting
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Let us repeat some basics things to talk about

0 = arg min E(u).
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Let us repeat some basics things to talk about

0 = arg min E(u).

ueR?

Definition
e For E:R" — RU {oo}, we call

dom(E) :={u e R"| E(u) < oo}
the domain of E.

o We call E proper if dom(E) # 0.
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Definition: Convex Function

We call E : R” — R U {oo} a convex function if

@ dom(E) is a convex set, i.e. for all u, v € dom(E) and all
6 € [0, 1] it holds that fu + (1 — 8)v € dom(E).

® For all u,v € dom(E) and all § € [0, 1] it holds that
E(Qu+ (1 —0)v) <0E(u)+ (1 —0)E(v)

We call E strictly convex, if the inequality in 2 is strict for all
6 €]0,1[, and v # u.

Convex Analysis

Michael Moeller

Basics
Existence

Uniqueness

The Subdifferential

updated 14.04.2015



Variational Problems

Convex Analysis

Michael Moeller
Example: Inpainting

Basics

Existence
Uniqueness
The Subdifferential

0 = arg min
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V(Dewp? + (D,up?

, suchthatu;=fVviel

1
with index set I of uncorrupted pixels.
— Discuss convexity.
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U =arg Erg]an E(u)
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When does
U =arg min E(u
guEJR" ( )
. Basics
exist? Convexity
Uniqueness
The Subdifferential
e FE is lower semi-continuous, i.e. for all u
liminf E(v) > E(u
minf E(v) > E(u)
holds.

e There exists an « such that

{u] E(u) <a}

is non-empty and bounded.
Proof: Board.
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Fundamental Theorem of Optimization

If E:R" — RU{oo} is lower semi-continuous and has a
nonempty bounded sublevelset, then there exists

U=arg 5251{1” E(u)
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Fundamental Theorem of Optimization

If E:R" — RU{oo} is lower semi-continuous and has a
nonempty bounded sublevelset, then there exists

U= arg min E(u)

ueR”

Remark: For a proper convex function, lower semi-continuity is
the same as the closedness of the sublevelsets.
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Fundamental Theorem of Optimization

If E:R" — RU{oo} is lower semi-continuous and has a

nonempty bounded sublevelset, then there exists pasies
—
~n . Uniqueness
b = arg min E(u) S

Remark: For a proper convex function, lower semi-continuity is
the same as the closedness of the sublevelsets.

Examples on the board:
e A convex continuous function that does not have a
minimizer
e A convex function with bounded sublevelsets that does not
have a minimizer
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Continuity of Convex Functions
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If E:R" — RU{oo} is convex, then E is locally Lipschitz (and Conesiy
hence continuous) on int(dom(E)).
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The Subdifferential

Proof: Exercise (in 1d)

Board: Considering the interior is important!
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Continuity of Convex Functions
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If E:R" — RU{oo} is convex, then E is locally Lipschitz (and Conesiy
hence continuous) on int(dom(E)).
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Proof: Exercise (in 1d)

Board: Considering the interior is important!

Conclusion

If E: R"” — R is convex, then E is continuous.
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o
Definition
We call E : R” — R U {oco} coercive, if all sequences (us), with Uniuoness
||Un|| — 00 meet E(Un) 5 00. The Subdifferential
Theorem

If E: R" — R is convex and coercive, then there exists

U =arg D;]IQ E(u).
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When iS Basics
N . Convexity
U =argmin E(u Existonce
9 UERN (u)
. The Subdifferential
unique?
Theorem

If E:R" — RU{oo} is convex, then any local minimum is a

global minimum. If E is strictly convex, the global minimum is
unique.
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Definition: Subdifferential
We call

OE(u) = {p € R" | E(v) — E(u) — {p,v — u) > 0}

the subdifferential of E at u.
o Elements of 9E(u) are called subgradients.
o If OE(u) # (), we call E subdifferentiable at E.
e By convention, 9E(u) = 0 for u # dom(E).
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What is an optimality condition for
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Definition: Subdifferential
We call

OE(u) = {p € R" | E(v) — E(u) — {p,v — u) > 0}

the subdifferential of E at u.
o Elements of 9E(u) are called subgradients.
o If OE(u) # (), we call E subdifferentiable at E.
e By convention, 9E(u) = 0 for u # dom(E).

Theorem: Optimality condition
Let 0 € OE(Q). Then & € arg min, E(u).
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Examples: Unigueness
e The ¢! norm.
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e The ¢! norm.
e Functional

0 ifu>0
E(u)_{ o else.
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Definition: Relative Interior Basios
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The relative interior of a convex set M is defined as Existence
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(M) ={xeM|VyeM, IAx>1,st. Ax+(1-N)yeM}
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Definition: Relative Interior
The relative interior of a convex set M is defined as
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Uniqueness

(M) ={xeM|VyeM, IAx>1,st. Ax+(1-N)yeM}

Theorem

If E is a proper convex function and u € ri(dom(E)), then
OE(u) is not empty.
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Let Eq, E> be convex functions such that Convexiy
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Theorem: Sum rule
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ri(dom(E;)) Nri(dom(Ez)) # 0,
then it holds that

O(E; + Ez)(u) = OE;(u) + 9Ex(u).
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Theorem: Sum rule
Let Eq, E> be convex functions such that

ri(dom(E;)) Nri(dom(Ez)) # 0,
then it holds that

O(E; + Ez)(u) = OE;(u) + 9Ex(u).

Example: Minimize (u — f)? + ty>o0(u).
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Theorem: Sum rule
Let Eq, E> be convex functions such that

ri(dom(E;)) Nri(dom(Ez)) # 0,
then it holds that

O(E; + Ez)(u) = OE;(u) + 9Ex(u).

Example: Minimize (u — f)? + ty>o0(u).

Example: Minimize 0.5(u — )2 + a/|u|.
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Theorem: Chain rule

If Aec R™" E:R™— RU{oo} is convex, and
ri(dom(E)) Nrange(A) # 0, then

A(E o A)(u) = A*9E(Au)
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Theorem: Chain rule

If Aec R™" E:R™— RU{oo} is convex, and
ri(dom(E)) Nrange(A) # 0, then

A(E o A)(u) = A*9E(Au)

Example: Minimize ||Au — f|3.
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