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Variational Problems

Example: Inpainting

û = arg min
u∈Rn

∥∥∥∥√(Dxu)2 + (Dy u)2

∥∥∥∥
1
, such that ui = fi ∀i ∈ I

with index set I of uncorrupted pixels.
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Variational Problems

Let us repeat some basics things to talk about

û = arg min
u∈Rn

E(u).

Definition

• For E : Rn → R ∪ {∞}, we call

dom(E) := {u ∈ Rn | E(u) <∞}

the domain of E .
• We call E proper if dom(E) 6= ∅.
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Definition: Convex Function

We call E : Rn → R ∪ {∞} a convex function if

1 dom(E) is a convex set, i.e. for all u, v ∈ dom(E) and all
θ ∈ [0,1] it holds that θu + (1− θ)v ∈ dom(E).

2 For all u, v ∈ dom(E) and all θ ∈ [0,1] it holds that

E(θu + (1− θ)v) ≤ θE(u) + (1− θ)E(v)

We call E strictly convex, if the inequality in 2 is strict for all
θ ∈]0,1[, and v 6= u.
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Variational Problems

Example: Inpainting

û = arg min
u∈Rn

∥∥∥∥√(Dxu)2 + (Dy u)2

∥∥∥∥
1
, such that ui = fi ∀i ∈ I

with index set I of uncorrupted pixels.
→ Discuss convexity.
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When does
û = arg min

u∈Rn
E(u)

exist?

• E is lower semi-continuous, i.e. for all u

lim inf
v→u

E(v) ≥ E(u)

holds.
• There exists an α such that

{u | E(u) ≤ α}

is non-empty and bounded.

Proof: Board.
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û = arg min

u∈Rn
E(u)

exist?

• E is lower semi-continuous, i.e. for all u

lim inf
v→u

E(v) ≥ E(u)

holds.
• There exists an α such that

{u | E(u) ≤ α}

is non-empty and bounded.

Proof: Board.



Convex Analysis

Michael Moeller

Basics
Convexity

Existence

Uniqueness

The Subdifferential

TV minimization

updated 29.04.2015

Variational Problems

Fundamental Theorem of Optimization

If E : Rn → R ∪ {∞} is lower semi-continuous and has a
nonempty bounded sublevelset, then there exists

û = arg min
u∈Rn

E(u)

Remark: For a proper convex function, lower semi-continuity is
the same as the closedness of the sublevelsets.

Examples on the board:
• A convex continuous function that does not have a

minimizer
• A convex function with bounded sublevelsets that does not

have a minimizer
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Variational Problems

Continuity of Convex Functions

If E : Rn → R ∪ {∞} is convex, then E is locally Lipschitz (and
hence continuous) on int(dom(E)).

Proof: Exercise (in 1d)

Board: Considering the interior is important!

Conclusion

If E : Rn → R is convex, then E is continuous.



Convex Analysis

Michael Moeller

Basics
Convexity

Existence

Uniqueness

The Subdifferential

TV minimization

updated 29.04.2015

Variational Problems

Continuity of Convex Functions

If E : Rn → R ∪ {∞} is convex, then E is locally Lipschitz (and
hence continuous) on int(dom(E)).

Proof: Exercise (in 1d)

Board: Considering the interior is important!

Conclusion

If E : Rn → R is convex, then E is continuous.



Convex Analysis

Michael Moeller

Basics
Convexity

Existence

Uniqueness

The Subdifferential

TV minimization

updated 29.04.2015
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Definition

We call E : Rn → R ∪ {∞} coercive, if all sequences (un)n with
‖un‖ → ∞ meet E(un)→∞.

Theorem

If E : Rn → R is convex and coercive, then there exists

û = arg min
u∈Rn

E(u).
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Variational Problems

When is
û = arg min

u∈Rn
E(u)

unique?

Theorem

If E : Rn → R ∪ {∞} is convex, then any local minimum is a
global minimum. If E is strictly convex, the global minimum is
unique.
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Variational Problems
What is an optimality condition for

û = arg min
u∈Rn

E(u)?

Definition: Subdifferential

We call

∂E(u) = {p ∈ Rn | E(v)− E(u)− 〈p, v − u〉 ≥ 0}

the subdifferential of E at u.
• Elements of ∂E(u) are called subgradients.
• If ∂E(u) 6= ∅, we call E subdifferentiable at E .
• By convention, ∂E(u) = ∅ for u 6= dom(E).

Theorem: Optimality condition

Let 0 ∈ ∂E(û). Then û ∈ arg minu E(u).



Convex Analysis

Michael Moeller

Basics
Convexity

Existence

Uniqueness

The Subdifferential

TV minimization

updated 29.04.2015

Variational Problems
What is an optimality condition for
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Variational Problems

Examples for non-differentiable functions:
• The `1 norm.

• Functional

E(u) =
{

0 if u ≥ 0
∞ else.

Subdifferential and derivatives

Let the convex function E : Rn → R ∪ {∞} be differentiable at
x ∈ dom(E). Then

∂E(x) = {∇E(x)}.
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Variational Problems

Is any convex E subdifferentiable at x ∈ dom(E)?

Answer: Almost...

Definition: Relative Interior

The relative interior of a convex set M is defined as

ri(M) := {x ∈ M | ∀y ∈ M, ∃λ > 1, s.t. λx + (1− λ)y ∈ M}

Theorem: Subdifferentiability1

If E is a proper convex function and u ∈ ri(dom(E)), then
∂E(u) is non-empty and bounded.

1Rockafellar, Convex Analysis, Theorem 23.4
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Variational Problems

Theorem: Sum rule2

Let E1, E2 be convex functions such that

ri(dom(E1)) ∩ ri(dom(E2)) 6= ∅,

then it holds that

∂(E1 + E2)(u) = ∂E1(u) + ∂E2(u).

Example: Minimize (u − f )2 + ιu≥0(u).

Example: Minimize 0.5(u − f )2 + α|u|.

2Rockafellar, Convex Analysis, Theorem 23.8
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Theorem: Chain rule3

If A ∈ Rm×n, E : Rm → R ∪ {∞} is convex, and
ri(dom(E)) ∩ range(A) 6= ∅, then

∂(E ◦ A)(u) = A∗∂E(Au)

Example: Minimize ‖Au − f‖2
2.

3Rockafellar, Convex Analysis, Theorem 23.9
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Variational Problems

Summary (without assumptions):

• ∂E(u) = {p ∈ Rn | E(v)− E(u)− 〈p, v − u〉 ≥ 0}

• If E differentiable: ∂E(x) = {∇E(x)}

• Sum rule ∂(E1 + E2)(x) = ∂E1(x) + ∂E2(x)

• Cain rule ∂(E ◦ A)(u) = A∗∂E(Au)
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What is TV again?

For u ∈ Rm×n let us consider the anisotropic total variation

TVa(u) =
m∑

i=2

n∑
j=2

|ui,j − ui−1,j |+ |ui,j − ui,j−1|

For doing math, it is often easier to consider ~ui+m(j−1) = u(i , j)
and write

TVa(u) = ‖K~u‖1

for a suitable matrix K that discretizes the gradient.
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TV Minimization

Our problem becomes

u(α) = arg min
u∈Rnm

1
2
‖u − f‖2

2 + α‖Ku‖1.

Let us try to apply all the learned theory. The minimizer is
obtained at

0 ∈ u(α)− f + αK T q

with q ∈ ∂‖Ku(α)‖1, i.e.

qi

 = 1 if (Ku(α))i > 0
= −1 if (Ku(α))i < 0
∈ [−1,1] if (Ku(α))i = 0

Seems extremely difficult to find...
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TV Minimization

Crazy idea:

min
u

1
2
‖u − f‖2

2 + α‖Ku‖1 =min
u

1
2
‖u − f‖2

2 + α sup
‖q‖∞≤1

〈Ku,q〉

=min
u

sup
‖q‖∞≤1

1
2
‖u − f‖2

2 + α〈Ku,q〉

Can we exchange min and sup?
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TV Minimization

Saddle point problems4

Let C and D be non-empty closed convex sets in Rn and Rm,
respectively, and let S be a continuous finite concave-convex
function on C × D. If either C or D is bounded, one has

inf
v∈D

sup
q∈C

S(v ,q) = sup
q∈C

inf
v∈D

S(v ,q).

We can therefore compute

min
u

1
2
‖u − f‖2

2 + α‖Ku‖1 =min
u

sup
‖q‖∞≤1

1
2
‖u − f‖2

2 + α〈Ku,q〉

= sup
‖q‖∞≤1

min
u

1
2
‖u − f‖2

2 + α〈Ku,q〉.

4Rockafellar, Convex Analysis, Corollary 37.3.2
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TV Minimization

Now the inner minimization problem obtains its optimum at

0 = u − f + αK T q,

⇒u = f − αK T q.

The remaining problem in q becomes

sup
‖q‖∞≤1

1
2
‖f − αK T q − f‖2

2 + α〈K (f − αK T q),q〉

= sup
‖q‖∞≤1

1
2
‖αK T q‖2

2 + α〈Kf ,q〉 − ‖αK T q‖2
2

= sup
‖q‖∞≤1

−1
2
‖αK T q − f‖2

2
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TV Minimization

Since we prefer minimizations over maximizations, we write

q̂ =arg max
‖q‖∞≤1

−1
2
‖αK T q − f‖2

2

= arg min
‖q‖∞≤1

1
2

∥∥∥∥K T q − f
α

∥∥∥∥2

2

Idea: Gradient descent + project onto feasible set.

qk+1 = π‖q‖∞≤1

(
qk − τK

(
K T qk − f

α

))
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TV Minimization

Gradient projection algorithm5

The algorithm

qk+1 = π‖·‖∞≤1

(
qk − τK

(
K T qk − f

α

))
with uk = f − αqk , for TV minimization converges for τ < 1

4 .

Remark: The 1/4 is two over the Lipschitz constant of the
gradient of the smooth objective.

5Levitin, Polyak, Constrained minimization problems, 1966. Goldstein,
Convex programming in Hilbert space, 1964.


