Chapter 1
 Convex Analysis

Nonlinear Multiscale Methods for Image and Signal Analysis SS 2015

Basics

Convexity
Existence
Uniqueness
The Subdifferential
TV minimization

Michael Moeller
Computer Vision
TU München

Variational Problems

Example: Inpainting

This image is corrupted because someone v image is corrupted because someone wrote corrupted because someone wrote this stup because someone wrote this stupid text on someone wrote this stupid text on top of it

Basics

Convexity
Existence
Uniqueness
The Subdifferential
TV minimization

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}}\left\|\sqrt{\left(D_{x} u\right)^{2}+\left(D_{y} u\right)^{2}}\right\|_{1}, \quad \text { such that } u_{i}=f_{i} \forall i \in I
$$

with index set I of uncorrupted pixels.

Variational Problems

Example: Inpainting

Basics

Convexity
Existence
Uniqueness
The Subdifferential

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}}\left\|\sqrt{\left(D_{x} u\right)^{2}+\left(D_{y} u\right)^{2}}\right\|_{1}, \quad \text { such that } u_{i}=f_{i} \forall i \in I
$$

with index set I of uncorrupted pixels.

Convexity

Basics
Convexity
Existence
Uniqueness
The Subdifferential
TV minimization

Variational Problems

Let us repeat some basics things to talk about

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u) .
$$

Basics
Convexity
Existence
Uniqueness
The Subdifferential
TV minimization

Variational Problems

Let us repeat some basics things to talk about

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u) .
$$

Definition

- For $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$, we call

$$
\operatorname{dom}(E):=\left\{u \in \mathbb{R}^{n} \mid E(u)<\infty\right\}
$$

the domain of E.

- We call E proper if $\operatorname{dom}(E) \neq \emptyset$.

Variational Problems

Definition: Convex Function

We call $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ a convex function if
(1) $\operatorname{dom}(E)$ is a convex set, i.e. for all $u, v \in \operatorname{dom}(E)$ and all $\theta \in[0,1]$ it holds that $\theta u+(1-\theta) v \in \operatorname{dom}(E)$.
(2) For all $u, v \in \operatorname{dom}(E)$ and all $\theta \in[0,1]$ it holds that

$$
E(\theta u+(1-\theta) v) \leq \theta E(u)+(1-\theta) E(v)
$$

We call E strictly convex, if the inequality in 2 is strict for all $\theta \in] 0,1[$, and $v \neq u$.

Variational Problems

Example: Inpainting

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}}\left\|\sqrt{\left(D_{x} u\right)^{2}+\left(D_{y} u\right)^{2}}\right\|_{1}, \quad \text { such that } u_{i}=f_{i} \forall i \in I
$$

with index set / of uncorrupted pixels.
\rightarrow Discuss convexity.

Existence

Basics

Convexity
Existence
Uniqueness
The Subdifferential
TV minimization

Variational Problems

When does

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u)
$$

exist?

Basics

Convexity
Existence
Uniqueness
The Subdifferential
TV minimization

Variational Problems

When does

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u)
$$

exist?

- E is lower semi-continuous, i.e. for all u

Basics

Convexity
Existence
Uniqueness
The Subdifferential
TV minimization

$$
\liminf _{v \rightarrow u} E(v) \geq E(u)
$$

holds.

- There exists an α such that

$$
\{u \mid E(u) \leq \alpha\}
$$

is non-empty and bounded.
Proof: Board.

Variational Problems

Fundamental Theorem of Optimization

If $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is lower semi-continuous and has a nonempty bounded sublevelset, then there exists

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u)
$$

Variational Problems

Fundamental Theorem of Optimization

If $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is lower semi-continuous and has a nonempty bounded sublevelset, then there exists

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u)
$$

Remark: For a proper convex function, lower semi-continuity is the same as the closedness of the sublevelsets.

Variational Problems

Fundamental Theorem of Optimization

If $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is lower semi-continuous and has a nonempty bounded sublevelset, then there exists

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u)
$$

Remark: For a proper convex function, lower semi-continuity is the same as the closedness of the sublevelsets.

Examples on the board:

- A convex continuous function that does not have a minimizer
- A convex function with bounded sublevelsets that does not have a minimizer

Variational Problems

Continuity of Convex Functions

If $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is convex, then E is locally Lipschitz (and hence continuous) on $\operatorname{int}(\operatorname{dom}(E))$.

Basics

Convexity
Existence
Uniqueness
The Subdifferential
TV minimization

Proof: Exercise (in 1d)

Board: Considering the interior is important!

Variational Problems

Continuity of Convex Functions

If $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is convex, then E is locally Lipschitz (and hence continuous) on $\operatorname{int}(\operatorname{dom}(E))$.

Proof: Exercise (in 1d)

Board: Considering the interior is important!

Conclusion

If $E: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex, then E is continuous.

Variational Problems

Definition

We call $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ coercive, if all sequences $\left(u_{n}\right)_{n}$ with $\left\|u_{n}\right\| \rightarrow \infty$ meet $E\left(u_{n}\right) \rightarrow \infty$.

Basics

Convexity
Existence
Uniqueness
The Subdifferential
TV minimization

Theorem

If $E: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and coercive, then there exists

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u) .
$$

Variational Problems

When is

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u)
$$

unique?

Basics

Convexity
Existence
Uniqueness
The Subdifferential
TV minimization

Variational Problems

When is

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u)
$$

unique?

Theorem

If $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is convex, then any local minimum is a global minimum. If E is strictly convex, the global minimum is unique.

Subdifferential Calculus

Basics

Convexity
Existence
Uniqueness

Variational Problems

What is an optimality condition for

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u) ?
$$

Variational Problems

What is an optimality condition for

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u) ?
$$

Definition: Subdifferential

We call

$$
\partial E(u)=\left\{p \in \mathbb{R}^{n} \mid E(v)-E(u)-\langle p, v-u\rangle \geq 0\right\}
$$

the subdifferential of E at u.

- Elements of $\partial E(u)$ are called subgradients.
- If $\partial E(u) \neq \emptyset$, we call E subdifferentiable at E.
- By convention, $\partial E(u)=\emptyset$ for $u \neq \operatorname{dom}(E)$.

Variational Problems

What is an optimality condition for

$$
\hat{u}=\arg \min _{u \in \mathbb{R}^{n}} E(u) ?
$$

Definition: Subdifferential

We call

$$
\partial E(u)=\left\{p \in \mathbb{R}^{n} \mid E(v)-E(u)-\langle p, v-u\rangle \geq 0\right\}
$$

the subdifferential of E at u.

- Elements of $\partial E(u)$ are called subgradients.
- If $\partial E(u) \neq \emptyset$, we call E subdifferentiable at E.
- By convention, $\partial E(u)=\emptyset$ for $u \neq \operatorname{dom}(E)$.

Theorem: Optimality condition

Let $0 \in \partial E(\hat{u})$. Then $\hat{u} \in \arg \min _{u} E(u)$.

Variational Problems

Examples for non-differentiable functions:

- The ℓ^{1} norm.

Existence
Uniqueness
The Subdifferential
TV minimization

Variational Problems

Examples for non-differentiable functions:

- The ℓ^{1} norm.
- Functional

$$
E(u)=\left\{\begin{array}{cc}
0 & \text { if } u \geq 0 \\
\infty & \text { else }
\end{array}\right.
$$

Basics

Convexity
Existence
Uniqueness
The Subdifferential
TV minimization

Variational Problems

Examples for non-differentiable functions:

- The ℓ^{1} norm.
- Functional

$$
E(u)=\left\{\begin{array}{cc}
0 & \text { if } u \geq 0 \\
\infty & \text { else }
\end{array}\right.
$$

Basics

Convexity
Existence
Uniqueness
The Subdifferential
TV minimization

Subdifferential and derivatives

Let the convex function $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ be differentiable at $x \in \operatorname{dom}(E)$. Then

$$
\partial E(x)=\{\nabla E(x)\} .
$$

Variational Problems

Is any convex E subdifferentiable at $x \in \operatorname{dom}(E)$?

[^0]
Variational Problems

Is any convex E subdifferentiable at $x \in \operatorname{dom}(E)$?
Answer: Almost...

Definition: Relative Interior

The relative interior of a convex set M is defined as

$$
\operatorname{ri}(M):=\{x \in M \mid \forall y \in M, \exists \lambda>1, \text { s.t. } \lambda x+(1-\lambda) y \in M\}
$$

[^1]
Variational Problems

Is any convex E subdifferentiable at $x \in \operatorname{dom}(E)$?
Answer: Almost...

Definition: Relative Interior

The relative interior of a convex set M is defined as

$$
\operatorname{ri}(M):=\{x \in M \mid \forall y \in M, \exists \lambda>1 \text {, s.t. } \lambda x+(1-\lambda) y \in M\}
$$

Theorem: Subdifferentiability ${ }^{1}$

If E is a proper convex function and $u \in \operatorname{ri}(\operatorname{dom}(E))$, then $\partial E(u)$ is non-empty and bounded.

[^2]
Variational Problems

Theorem: Sum rule ${ }^{2}$

Let E_{1}, E_{2} be convex functions such that

$$
\operatorname{ri}\left(\operatorname{dom}\left(E_{1}\right)\right) \cap \operatorname{ri}\left(\operatorname{dom}\left(E_{2}\right)\right) \neq \emptyset,
$$

then it holds that

$$
\partial\left(E_{1}+E_{2}\right)(u)=\partial E_{1}(u)+\partial E_{2}(u) .
$$

[^3]
Variational Problems

Theorem: Sum rule ${ }^{2}$

Let E_{1}, E_{2} be convex functions such that

$$
\operatorname{ri}\left(\operatorname{dom}\left(E_{1}\right)\right) \cap \operatorname{ri}\left(\operatorname{dom}\left(E_{2}\right)\right) \neq \emptyset,
$$

then it holds that

$$
\partial\left(E_{1}+E_{2}\right)(u)=\partial E_{1}(u)+\partial E_{2}(u) .
$$

Example: Minimize $(u-f)^{2}+\iota_{u \geq 0}(u)$.

Variational Problems

Theorem: Sum rule ${ }^{2}$

Let E_{1}, E_{2} be convex functions such that

$$
\operatorname{ri}\left(\operatorname{dom}\left(E_{1}\right)\right) \cap \operatorname{ri}\left(\operatorname{dom}\left(E_{2}\right)\right) \neq \emptyset,
$$

then it holds that

$$
\partial\left(E_{1}+E_{2}\right)(u)=\partial E_{1}(u)+\partial E_{2}(u) .
$$

Example: Minimize $(u-f)^{2}+\iota_{u \geq 0}(u)$.
Example: Minimize $0.5(u-f)^{2}+\alpha|u|$.

[^4]
Variational Problems

Theorem: Chain rule ${ }^{3}$

If $A \in \mathbb{R}^{m \times n}, E: \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{\infty\}$ is convex, and $\operatorname{ri}(\operatorname{dom}(E)) \cap \operatorname{range}(A) \neq \emptyset$, then

$$
\partial(E \circ A)(u)=A^{*} \partial E(A u)
$$

[^5]
Variational Problems

Theorem: Chain rule ${ }^{3}$

If $A \in \mathbb{R}^{m \times n}, E: \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{\infty\}$ is convex, and $\operatorname{ri}(\operatorname{dom}(E)) \cap \operatorname{range}(A) \neq \emptyset$, then

$$
\partial(E \circ A)(u)=A^{*} \partial E(A u)
$$

Example: Minimize $\|A u-f\|_{2}^{2}$.

[^6]
Variational Problems

Summary (without assumptions):

- $\partial E(u)=\left\{p \in \mathbb{R}^{n} \mid E(v)-E(u)-\langle p, v-u\rangle \geq 0\right\}$
- If E differentiable: $\partial E(x)=\{\nabla E(x)\}$
- Sum rule $\partial\left(E_{1}+E_{2}\right)(x)=\partial E_{1}(x)+\partial E_{2}(x)$
- Cain rule $\partial(E \circ A)(u)=A^{*} \partial E(A u)$

TV minimization

Basics

Convexity
Existence
Uniqueness
The Subdifferential

TV minimization

Basics
Convexity
Existence
Uniqueness
The Subdifferential
TV minimization

TV minimization

Convexity

Existence
Uniqueness
The Subdifferential

What is TV again?

For $u \in \mathbb{R}^{m \times n}$ let us consider the anisotropic total variation

$$
T V_{a}(u)=\sum_{i=2}^{m} \sum_{j=2}^{n}\left|u_{i, j}-u_{i-1, j}\right|+\left|u_{i, j}-u_{i, j-1}\right|
$$

What is TV again?

For $u \in \mathbb{R}^{m \times n}$ let us consider the anisotropic total variation

$$
T V_{a}(u)=\sum_{i=2}^{m} \sum_{j=2}^{n}\left|u_{i, j}-u_{i-1, j}\right|+\left|u_{i, j}-u_{i, j-1}\right|
$$

For doing math, it is often easier to consider $\vec{u}_{i+m(j-1)}=u(i, j)$ and write

$$
T V_{a}(u)=\|K \vec{u}\|_{1}
$$

for a suitable matrix K that discretizes the gradient.

TV Minimization

Our problem becomes

$$
u(\alpha)=\arg \min _{u \in \mathbb{R}^{n m}} \frac{1}{2}\|u-f\|_{2}^{2}+\alpha\|K u\|_{1} .
$$

Let us try to apply all the learned theory. The minimizer is obtained at

$$
0 \in u(\alpha)-f+\alpha K^{T} q
$$

with $q \in \partial\|K u(\alpha)\|_{1}$, i.e.

$$
q_{i} \begin{cases}=1 & \text { if }(K u(\alpha))_{i}>0 \\ =-1 & \text { if }(K u(\alpha))_{i}<0 \\ \in[-1,1] & \text { if }(K u(\alpha))_{i}=0\end{cases}
$$

Seems extremely difficult to find...

TV Minimization

Crazy idea:

$$
\begin{aligned}
\min _{u} \frac{1}{2}\|u-f\|_{2}^{2}+\alpha\|K u\|_{1} & =\min _{u} \frac{1}{2}\|u-f\|_{2}^{2}+\alpha \sup _{\|q\|_{\infty} \leq 1}\langle K u, q\rangle \\
& =\min _{u} \sup _{\|q\|_{\infty} \leq 1} \frac{1}{2}\|u-f\|_{2}^{2}+\alpha\langle K u, q\rangle
\end{aligned}
$$

Can we exchange min and sup?

TV Minimization

Saddle point problems ${ }^{4}$

Let C and D be non-empty closed convex sets in \mathbb{R}^{n} and \mathbb{R}^{m}, respectively, and let S be a continuous finite concave-convex function on $C \times D$. If either C or D is bounded, one has

$$
\inf _{v \in D} \sup _{q \in C} S(v, q)=\sup _{q \in C} \inf _{v \in D} S(v, q) .
$$

[^7]
TV Minimization

Saddle point problems ${ }^{4}$

Let C and D be non-empty closed convex sets in \mathbb{R}^{n} and \mathbb{R}^{m}, respectively, and let S be a continuous finite concave-convex function on $C \times D$. If either C or D is bounded, one has

$$
\inf _{v \in D} \sup _{q \in C} S(v, q)=\sup _{q \in C} \inf _{v \in D} S(v, q) .
$$

We can therefore compute

$$
\begin{aligned}
\min _{u} \frac{1}{2}\|u-f\|_{2}^{2}+\alpha\|K u\|_{1} & =\min _{u} \sup _{\|q\|_{\infty} \leq 1} \frac{1}{2}\|u-f\|_{2}^{2}+\alpha\langle K u, q\rangle \\
& =\sup _{\|q\|_{\infty} \leq 1} \min _{u} \frac{1}{2}\|u-f\|_{2}^{2}+\alpha\langle K u, q\rangle .
\end{aligned}
$$

[^8]
TV Minimization

Now the inner minimization problem obtains its optimum at

$$
\begin{aligned}
0 & =u-f+\alpha K^{\top} q, \\
\Rightarrow u & =f-\alpha K^{T} q .
\end{aligned}
$$

The remaining problem in q becomes

Basics

Convexity
Existence
Uniqueness
The Subdifferential

$$
\begin{aligned}
& \sup _{\|q\|_{\infty} \leq 1} \frac{1}{2}\left\|f-\alpha K^{T} q-f\right\|_{2}^{2}+\alpha\left\langle K\left(f-\alpha K^{T} q\right), q\right\rangle \\
& =\sup _{\|q\|_{\infty} \leq 1} \frac{1}{2}\left\|\alpha K^{\top} q\right\|_{2}^{2}+\alpha\langle K f, q\rangle-\left\|\alpha K^{T} q\right\|_{2}^{2} \\
& =\sup _{\|q\|_{\infty} \leq 1}-\frac{1}{2}\left\|\alpha K^{T} q-f\right\|_{2}^{2}
\end{aligned}
$$

TV Minimization

Since we prefer minimizations over maximizations, we write

$$
\begin{aligned}
\hat{q}= & \arg \max _{\|q\|_{\infty} \leq 1}-\frac{1}{2}\left\|\alpha K^{T} q-f\right\|_{2}^{2} \\
& =\arg \min _{\|q\|_{\infty} \leq 1} \frac{1}{2}\left\|K^{\top} q-\frac{f}{\alpha}\right\|_{2}^{2}
\end{aligned}
$$

Idea: Gradient descent + project onto feasible set.

$$
q^{k+1}=\pi_{\|q\|_{\infty} \leq 1}\left(q^{k}-\tau K\left(K^{T} q^{k}-\frac{f}{\alpha}\right)\right)
$$

TV Minimization

Gradient projection algorithm ${ }^{5}$

The algorithm

$$
q^{k+1}=\pi_{\|\cdot\|_{\infty} \leq 1}\left(q^{k}-\tau K\left(K^{T} q^{k}-\frac{f}{\alpha}\right)\right)
$$

Basics

Convexity
Existence
Uniqueness
The Subdifferential
with $u^{k}=f-\alpha q^{k}$, for TV minimization converges for $\tau<\frac{1}{4}$.

Remark: The $1 / 4$ is two over the Lipschitz constant of the gradient of the smooth objective.

[^9]
[^0]: ${ }^{1}$ Rockafellar, Convex Analysis, Theorem 23.4

[^1]: ${ }^{1}$ Rockafellar, Convex Analysis, Theorem 23.4

[^2]: ${ }^{1}$ Rockafellar, Convex Analysis, Theorem 23.4

[^3]: ${ }^{2}$ Rockafellar, Convex Analysis, Theorem 23.8

[^4]: ${ }^{2}$ Rockafellar, Convex Analysis, Theorem 23.8

[^5]: ${ }^{3}$ Rockafellar, Convex Analysis, Theorem 23.9

[^6]: ${ }^{3}$ Rockafellar, Convex Analysis, Theorem 23.9

[^7]: ${ }^{4}$ Rockafellar, Convex Analysis, Corollary 37.3.2

[^8]: ${ }^{4}$ Rockafellar, Convex Analysis, Corollary 37.3.2

[^9]: ${ }^{5}$ Levitin, Polyak, Constrained minimization problems, 1966. Goldstein, Convex programming in Hilbert space, 1964.

