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Linear signal denoising
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Linear image inpainting
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How can we understand the behavior of linear filters?

Consider for instance the simple linear sharpening

û = imfilter(f , k) = k ∗ f

with a kernel

k = fspecial(′unsharp′) =

 −0.1667 −0.6667 −0.1667
−0.6667 4.3333 −0.6667
−0.1667 −0.6667 −0.1667

 .

Remember the Convolution Theorem:

û = k ∗ f ⇒ F(û) = F(k)F(f )



Multiscale Methods

Michael Moeller

Linear filtering

updated 12.05.2015

Linear image and signal filtering

Absolute values of F(k).

Middle is 1 and corresponds to the lowest frequency
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Or in 1d:
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This representation is very intuitive for us, since we have an
understanding of frequencies and can look at filters.

But what does it mean mathematically?

What does F(û) = F(k)F(f ) do?

Pointwise (or componentwise) multiplication
→ F(k) is diagonal!
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Let us go back to linear algebra:

Consider
û = Af

for some symmetric positive definite matrix A ∈ Rn×n.

Note that any linear operator can be written in this form!

There exists an orthonormal basis {v1, ..., vn} of eigenvectors
of A with eigenvalues {λ1, ..., λn}:

Avi = λivi
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We write
f =

∑
i

aivi .

Now
û = Af =

∑
i

aiAvi =
∑

i

λiaivi .

Let us represent û in the eigenbasis of A and denote its
coefficients by bi . Then

b1
.
.

bn

 =


λ1 0 . 0
. . . .
. . . .
0 . 0 λn




a1
.
.

an


→We have diagonalized A and you know this since > 3 years.
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
b1
.
.

bn

 =


λ1 0 . 0
. . . .
. . . .
0 . 0 λn




a1
.
.

an


Engineering interpretation:

• λi is the filter coefficients for the i-th frequency.
• λi > 1 means boosting the frequency, λi < 1 means

damping the frequency.
• The interpretation of the frequency is given by the

eigenvector vi .
• Any convolution diagonalizes under sin/cos, which yields a

classical frequency.
• Other linear operators lead to other meanings of

frequencies.
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Variational methods can be linear, too...

û = arg min
u

1
2
‖u − f‖2

2 + α‖∇u‖2
2. (1)

Optimality at
0 = û − f − α∆û,

or
û = (I − α∆)−1f .

• Depends linearly on f .
• Also diagonalizes via FFT.
• Variational method (1) is nothing but a special frequency

filter...
• ... and does not work very well.
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Now consider

û = arg min
u

1
2
‖u − f‖2

2 + α‖∇u‖1, (2)

which is highly nonlinear.

Absolutely no eigenvector theory!

Or is there?


