Suggested Homework

Nonlinear Multiscale Methods for Image and Signal Analysis

Exercise 1. Convince yourself that

- every norm is convex.
- if $E : \mathbb{R}^n \to \mathbb{R}$ is convex, then $(E \circ A)$ for $A \in \mathbb{R}^{n \times m}$ is convex.

Exercise 2. Prove the following (1d) statement from the lecture. If $E : \mathbb{R} \to \mathbb{R} \cup \{\infty\}$ is convex, then E is locally Lipschitz on int(dom(E)).

Hint: First show that for $x, x_1, x_2 \in int(dom(E))$ with $x_1 < x < x_2$ it holds that

$$\frac{E(x) - E(x_1)}{x - x_1} \le \frac{E(x_2) - E(x_1)}{x_2 - x_1} \le \frac{E(x_2) - E(x)}{x_2 - x}.$$

Then, for a given $x \in int(dom(E))$ pick $a < x_1 < x < x_2 < b$ in int(dom(E)) and prove that E is Lipschitz on $]x_1, x_2[$.

Exercise 3. Find an example of a convex function $E : \mathbb{R} \to \mathbb{R} \cup \{\infty\}$ which is not continuous on dom(*E*).