Suggested Homework

Nonlinear Multiscale Methods for Image and Signal Analysis

Exercise 1. Let $J \in \Gamma_0(\mathbb{R}^n)$ be 1-homogeneous. Prove that J^* is the indicator function of $\partial J(0)$.

Exercise 2. Let $J \in \Gamma_0(\mathbb{R}^n)$ be 1-homogeneous with $\ker(J) = \{0\}$. Show that

$$|p|_* := \sup_{u,J(u) \le 1} \langle p, u \rangle$$

defines a norm on \mathbb{R}^n . Furthermore, show that $\partial J(0) = \{ p \in \mathbb{R}^n \mid |p|_* \leq 1 \}$.

Exercise 3. Implement a function isSubgradient = isSubgradient(u, K, q) that verifies if $||q||_{\infty} \le 1$ and $\langle K^Tq, u \rangle = ||Ku||_1$. Convince yourself that this implies $K^Tq \in \partial J(u)$ for $J(u) = ||Ku||_1$.

Advanced: Let K be a 1d finite difference matrix such that $J(u) = ||Ku||_1$ is the 1d total variation. Can you construct a q such that $isSubgradient(q, K, K^Tq)$ is true, i.e. $K^Tq \in \partial J(K^Tq)$?

Hint: q is piecewise linear.