Suggested Homework

Nonlinear Multiscale Methods for Image and Signal Analysis

Exercise 1 (4 points). Let $E : \mathbb{R} \to \mathbb{R}$ be a continuously differentiable convex function. Show that for all $u \in \mathbb{R}$ it holds that

$$\partial E(u) = \{ E'(u) \}.$$

Proof. Let $u \in \mathbb{R}$ be arbitrary. Let $p \in \partial E(u)$. Note that we know that the subdifferential is non-empty for $u \in ri(dom(E)) = \mathbb{R}$. The definition of the subdifferential tells us that

$$E(v) - E(u) - p(v - u) \ge 0, \ \forall v \in \mathbb{R}.$$

Choose $v = u + \epsilon$ to see that

$$\frac{E(u+\epsilon) - E(u)}{\epsilon} \ge p,$$
$$\frac{E(u) - E(u-\epsilon)}{\epsilon} \le p,$$

and $v = u - \epsilon$ to see that

hold for all
$$\epsilon > 0$$
. Since E is differentiable, the limit of $\epsilon \searrow 0$ exists for both left-hand-sides and is equal to the derivative. We obtain

$$p \le E'(u), \ p \ge E'(u),$$

which yields the assertion.