Suggested Homework

Nonlinear Multiscale Methods for Image and Signal Analysis

Exercise 1. Let ¢ € R™*™. Convince yourself that the projection p of ¢ onto the £>° ball
of radius one,
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Proof. Let us use the notation ¢;. for the i row of the matrix ¢q. The projection problem
can also be written as
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As we can see, the minimization problem decouples in the rows of ¢, such that p;. is given
by
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where i.,<1 denotes the indicator function of the ¢% unit ball. Although one might be able
to "see” the solution right away, let us use subdifferential calculus. The optimality condition
yields
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for some z € Qi ,<1(pi,;). Such a z must meet
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or in other words
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It is easy to see that this implies z = ap;. for a > 0 as well as a = 0 if ||¢;.||2 # 1. Reinserting
this finding into our optimality condition yields

(24 a)p;. + 2g;. = 0.

If we try to find a solution p,. with ||p;.||2 < 1, we obtain a = 0 and finally a contradiction
to ||gi:|l2 > 1. Thus , ||p;.||2 = 1 from which we obtain
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which yields the assertion. O]



