
Jakob Engel Semi-Dense Visual Odometry for a Monocular Camera 13

Direct Image Alignment
= „Direct Tracking“ / „Dense Tracking“
= „Lucas-Kanade Tracking on SE(3)“
→ Maximum-Likelihood Estimator
→ often used for RGB-D tracking (Kinect)

(Kerl et.al. @ ICRA ´13; Steinbruecker et.al. @ ICCV ´11; and many more)

+ →
Camera
pose

image

new image

per-pixel depth

Jakob Engel Semi-Dense Visual Odometry for a Monocular Camera 14

Direct minimization of photometric error

ref. image new image

sum over valid
ref. pixel

camera pose ref. depth

Direct Image Alignment

„warps“ a pixel from
ref. image to new image

Jakob Engel Semi-Dense Visual Odometry for a Monocular Camera 15

Direct Image Alignment

Jakob Engel Semi-Dense Visual Odometry for a Monocular Camera 16

Direct Image Alignment

• solved using the Gauss-Newton algorithm
using left-multiplicative increments on SE(3):

Intuition: Iteratively solve for by
approximating linearly, (i.e., by
approximating quadratically)

• using coarse-to-fine pyramid approach

Jakob Engel Semi-Dense Visual Odometry for a Monocular Camera 17

Direct Image Alignment

1. „Linearize“ r on Manifold around current pose :

2. Solve for

3. Apply
4. Iterate (until convergence)

Jakob Engel Semi-Dense Visual Odometry for a Monocular Camera 18

Direct Image Alignment

Requires gradient of residual:

with
• = warped point (before projection)

• = intrinsic camera calibration

• = image gradients

= 1x6 row of

Jakob Engel Semi-Dense Visual Odometry for a Monocular Camera 19

Direct Image Alignment

Coarse-to-Fine:
• Minimize for down-scaled image (e.g. factor 8, 4, 2, 1)

and use result as initialization for next finer level.
• Elegant formulation:

Downscale image and adjust K correspondingly:
• Downscale by factor of 2 (e.g. 640x480 -> 320->240)

• ->

• (assuming discrete pixel (x,y) contains continuous value at (x,y))

Jakob Engel Semi-Dense Visual Odometry for a Monocular Camera 20

Direct Image Alignment
Final Algorithm:

k = 0
for level = 3 ... 1

compute down-scaled images & depthmaps (factor =)
compute down-scaled K (factor =)
for i = 1..20

compute Jacobian

compute update

apply update

k++; maybe break early if too small or if residual increased

done
done
+ robust weights (e.g. Huber), see iteratively reweighted least squares
+ Levenberg-Marquad (LM) Algorithm

