Multiple View Geometry: Solution Exercise Sheet 6

Prof. Dr. Daniel Cremers, Julia Diebold, Robert Maier, TU Munich
http://vision.in.tum.de/teaching/ss2015/mvg2015

Part I: Theory

1. (a) E is essential matrix $\Rightarrow \Sigma=\operatorname{diag}\{\sigma, \sigma, 0\}$:

$$
\begin{aligned}
& R_{z}\left(\pm \frac{\pi}{2}\right) \Sigma=\left(\begin{array}{ccc}
0 & \mp 1 & 0 \\
\pm 1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
\sigma & 0 & 0 \\
0 & \sigma & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & \mp \sigma & 0 \\
\pm \sigma & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=-\left(R_{z}\left(\pm \frac{\pi}{2}\right) \Sigma\right)^{\top} \\
&-\hat{T}^{\top}=-\left(U R_{z} \Sigma U^{\top}\right)^{\top} \\
&=U\left(-R_{z} \Sigma\right)^{\top} U^{\top} \\
&=U R_{z} \Sigma U^{\top} \\
&=\hat{T}
\end{aligned}
$$

(b) i. U, V are orthogonal matrices $\Rightarrow U^{\top} U=I d$ and $V V^{\top}=I d$
R_{z} is a rotation matrix $\Rightarrow R_{z} R_{z}^{\top}=I d$

$$
\begin{aligned}
R^{\top} R & =\left(U R_{z}^{\top} V^{\top}\right)^{\top}\left(U R_{z}^{\top} V^{\top}\right) \\
& =V R_{z} U^{\top} U R_{z}^{\top} V^{\top} \\
& =V R_{z} R_{z}^{\top} V^{\top} \\
& =V V^{\top} \\
& =I d
\end{aligned}
$$

ii. U and V are special orthogonal matrices with $\operatorname{det}(U)=\operatorname{det}\left(V^{\top}\right)=1$.

$$
\operatorname{det}(R)=\operatorname{det}\left(U R_{z}^{\top} V^{\top}\right)=\underbrace{\operatorname{det}(U)}_{1} \cdot \underbrace{\operatorname{det}\left(R_{z}^{\top}\right)}_{1} \cdot \underbrace{\operatorname{det}\left(V^{\top}\right)}_{1}=1
$$

2. (a) $H=R+T u^{\top} \Leftrightarrow R=H-T u^{\top}$.

$$
E=\hat{T} R=\hat{T}\left(H-T u^{\top}\right)=\hat{T} H-\underbrace{\hat{T} T}_{=T \times T=0} u^{\top}=\hat{T} H
$$

(b)

$$
\begin{aligned}
H^{\top} E+E^{\top} H & =H^{\top}(\hat{T} H)+(\hat{T} H)^{\top} H \\
& =H^{\top}(\hat{T} H)+H^{\top} \hat{T}^{\top} H \\
& \left.=H^{\top} \hat{T} H-H^{\top} \hat{T} H \quad \text { (because } \hat{T} \text { is skew-symmetric, i.e. } \hat{T}^{\top}=-\hat{T}\right) \\
& =0
\end{aligned}
$$

3. $\forall x_{2}: \quad l_{1}=\left\{x_{1} \mid x_{2}^{\top} F x_{1}=0\right\}$

In particular: $e_{1} \in l_{1} \quad \Rightarrow \quad x_{2}^{\top} F e_{1}=0 \quad \forall x_{2}$

$$
\Rightarrow \quad F e_{1}=0
$$

(The camera center o_{2} is in the preimage of every $x_{2} \Rightarrow$ The epipol e_{1} (which is the projection of o_{2} to the image plane of image 1) lies on all epipolar lines l_{1})

Analogous: $e_{2}^{\top} F=0$.

