

Multiple View Geometry: Exercise Sheet 7

Prof. Dr. Daniel Cremers, Julia Diebold, Robert Maier, TU Munich
http://vision.in.tum.de/teaching/ss2015/mvg2015

Exercise: June 23rd, 2015

Part I: Theory

The following exercises should be **solved at home**. You do not have to hand in your solutions, however, writing it down will help you present your answer during the tutorials.

1. Epipoles

- (a) Why do the following relations between the epipoles and the fundamental matrix hold? $Fe_1 = 0$ and $e_2^{\top}F = 0$.
- (b) Denote by [R, T] the relative coordinate transformation between two camera views. Then the associated essential matrix is denoted by $F = \hat{T}R$. Show that the following holds for the epipoles e_1 and e_2 :

$$e_2 \sim T$$
 and $e_1 \sim R^+ e_2$

where \sim means equivalence in the sense of homogeneous coordinates.

2. Coinages of Points and Lines

Suppose p_1, p_2 are two points on the line L. Let x_1, x_2 be the images of the points p_1, p_2 , respectively, and let l be the coimage of the line L.

Furthermore suppose L_1, L_2 are two lines intersecting in the point p. Let x be the image of the point p and let l_1, l_2 be the coimages of the lines L_1, L_2 , respectively.

Draw a picture and convince yourself of the following relationships:

(a) Show that

 $l \sim \hat{x_1} x_2, \qquad x \sim \hat{l_1} l_2,$

(b) Show that for some $r, s, u, v \in \mathbb{R}^3$,

$$l_1 \sim \hat{x}u, \qquad l_2 \sim \hat{x}v, \qquad x_1 \sim \hat{l}r, \qquad x_2 \sim \hat{l}s$$

where \sim means equivalence in the sense of homogeneous coordinates.

3. Rank Constraints

Let x_1 and x_2 be two image points with projection matrices Π_1 , Π_2 . Show that the rank constraint

$$\operatorname{rank}\left(\begin{array}{c} \hat{x_1}\Pi_1\\ \hat{x_2}\Pi_2 \end{array}\right) \leqq 3$$

ensures that x_1 and x_2 are images (/ projections) of the same three-dimensional point X.

4. Projection and Essential Matrix

Suppose two projection matrices $\Pi = [R,T]$ and $\Pi' = [R',T'] \in \mathbb{R}^{3\times 4}$ are related by a common transformation H of the form

$$H = \begin{bmatrix} I & 0 \\ v^{\top} & v_4 \end{bmatrix} \in \mathbb{R}^{4 \times 4} \quad \text{where} \quad v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}.$$

That is, $[R, T]H \sim [R', T']$ are equal up to scale.

Show that Π and Π' give the same essential matrices ($E = \hat{T}R$ and $E' = \hat{T}'R'$) up to a scale factor.

Part II: Practical Exercises

This exercise is to be solved **during the tutorial**.

Epipolar lines

- 1. Download the package ex7.zip from the website. Extract the images batinria0.pgm and batinria1.pgm. Their corresponding camera calibration matrices can be found in the file calibration.txt.
- 2. Show the two images with matlab and select a point in the first image. You can use the command [x, y]=ginput (n) to retrieve the image coordinates of a mouse click.
- 3. Think about where the corresponding epipolar line l_2 in the second image could be.
- 4. Now compute the epipolar line $l_2 = Fx_1$ in the second image corresponding to the point x_1 in the first image. To this end you will need to compute the fundamental matrix F between the two images.

(Use the calibration data from the file calibration.txt.)

- 5. Test your program for different points x_1 . What do you observe?
- 6. Bonus: Determine the best matching point on the epipolar line via normalized cross correlation.