Multiple View Geometry: Solution Exercise Sheet 2

Prof. Dr. Daniel Cremers, Julia Diebold, Robert Maier, TU Munich http://vision.in.tum.de/teaching/ss2015/mvg2015

Part I: Theory

1. Groups and inclusions:

Groups

(a) SO(n): special orthogonal group

(b) O(n): orthogonal group

(c) GL(n): general linear group

(d) SL(n): special linear group

(e) SE(n): special euclidean group (In particular, SE(3) represents the rigid-body motions in \mathbb{R}^3)

(f) E(n): euclidean group

(g) A(n): affine group

Inclusions

(a) $SO(n) \subset O(n) \subset GL(n)$

(b) $SE(n) \subset E(n) \subset A(n) \subset GL(n+1)$

2.
$$\lambda_a = \frac{(\lambda_a v_a)^T v_b}{\langle v_a, v_b \rangle} = \frac{v_a^T A^T v_b}{\langle v_a, v_b \rangle} = \frac{v_a^T A v_b}{\langle v_a, v_b \rangle} = \frac{v_a^T (\lambda_b v_b)}{\langle v_a, v_b \rangle} = \lambda_b$$

3. Let V be the orthonormal matrix (i.e. $V^T=V^{-1}$) given by the eigenvectors, and Σ the diagonal matrix containing the eigenvalues:

$$V = \begin{pmatrix} | & & | \\ v_1 & \cdots & v_n \\ | & & | \end{pmatrix} \quad \text{ and } \quad \Sigma = \begin{pmatrix} \lambda_1 & 0 & \ddots \\ 0 & \ddots & 0 \\ \ddots & 0 & \lambda_n \end{pmatrix}.$$

As V is a basis, we can express x as a linear combination of the eigenvectors $x=V\alpha$ with $\alpha\in\mathbb{R}^n$, with $\sum_i\alpha_i^2=\alpha^T\alpha=x^TV^TVx=x^Tx=1$. This gives

$$x^{T}Ax = x^{T}V\Sigma V^{-1}x$$
$$= \alpha^{T}V^{T}V\Sigma V^{T}V\alpha$$
$$= \alpha^{T}\Sigma\alpha = \sum_{i} \alpha_{i}^{2}\lambda_{i}$$

Considering $\sum_i \alpha_i^2 = 1$, we can conclude that this expression is minimized iff only the α_i corresponding to the smallest eigenvalue(s) are non-zero. If $\lambda_{n-1} \geq \lambda_n$, there exist only two solutions $(\alpha_n = \pm 1)$, otherwise infinitely many.

For maximisation, only the the α_i corresponding to the largest eigenvalue(s) can be non-zero.

4. We show that: $x \in \text{kernel}(A) \Leftrightarrow x \in \text{kernel}(A^{\top}A)$.

"⇒": Let
$$x \in \text{kernel}(A)$$

$$A^{\top} \underbrace{Ax}_{=0} = A^{T}0 = 0 \quad \Rightarrow x \in \text{kernel}(A^{\top}A)$$
"\(\infty\)": Let $x \in \text{kernel}(A^{T}A)$

$$0 = x^{T} \underbrace{A^{T}Ax}_{=0} = \langle Ax, Ax \rangle = ||Ax||^{2} \quad \Rightarrow Ax = 0 \quad \Rightarrow x \in \text{kernel}(A)$$

- 5. Singular Value Decomposition (SVD)
 - (a) $A \in \mathbb{R}^{m \times n}$ with $m \ge n, U \in \mathbb{R}^{m \times m}, S \in \mathbb{R}^{m \times n}, V \in \mathbb{R}^{n \times n}$
 - (b) Similarities and differences between SVD and EVD:
 - i. Both are matrix diagonalization techniques.
 - ii. The SVD can be applied to matrices $A \in \mathbb{R}^{m \times n}$ with $m \neq n$, whereas the EVD is only applicable to quadratic matrices $(A \in \mathbb{R}^{m \times n} \text{ with } m = n)$.
 - (c) Relationship between U, S, V and the eigenvalues and eigenvectors of $A^{\top}A$ and AA^{\top} :
 - i. the columns of V are eigenvectors of $A^{\top}A$
 - ii. the columns of U are eigenvectors of AA^{\top}
 - (d) Entries in S:
 - i. S is a diagonal matrix. The elements along the diagonal are the *singular values* of A.
 - ii. The number of non-zero singular values gives us the rank of the matrix A.