

Multiple View Geometry: Solution Exercise Sheet 4

Prof. Dr. Daniel Cremers, Julia Diebold, Robert Maier, TU Munich

http://vision.in.tum.de/teaching/ss2015/mvg2015

Part I: Theory

Image Formation

1. Let $\mathbf{p}=(x y z)$ be a point on the smaller object and $\mathbf{p}^{\prime}=\left(x^{\prime} y^{\prime} z^{\prime}\right)$ a point on the larger object. Since \mathbf{p}^{\prime} is twice as far away, we have $z^{\prime}=2 z$, and twice as big we have $x^{\prime}=2 x$ and $y^{\prime}=2 y$. Hence, it follows that \mathbf{p} and \mathbf{p}^{\prime} lie on the same projection ray.

$$
\pi\left(\mathbf{p}^{\prime}\right)=\pi\left(\begin{array}{l}
2 x \\
2 y \\
2 z
\end{array}\right)=\binom{2 x / 2 z}{2 y / 2 z}=\binom{x / z}{y / z}=\pi\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\pi(\mathbf{p})
$$

2. Let $\mathbf{p}_{h}:=\binom{\mathbf{p}_{h}}{1}=\left(\begin{array}{llll}0 & 0 & 4 & 1\end{array}\right)^{\top}$. Hence:

$$
\begin{aligned}
& \tilde{\mathbf{p}}_{1}=\pi\left(\mathbf{P}_{1} \cdot \mathbf{p}_{h}\right)=\pi\left(\begin{array}{lll}
-3 & 0 & 4
\end{array}\right)^{\top}=\left(\begin{array}{lll}
-0.75 & 0
\end{array}\right)^{\top} \\
& \tilde{\mathbf{p}}_{2}=\pi\left(\mathbf{P}_{2} \cdot \mathbf{p}_{h}\right)=\pi\left(\begin{array}{lll}
1 & 0 & 4
\end{array}\right)^{\top}=\left(\begin{array}{ll}
0.25 & 0
\end{array}\right)^{\top}
\end{aligned}
$$

Radial Distortion

1. No, as it can only model points for which the viewing ray intersects the image plane.
2. $f(r)=1+a_{1} r^{2}+a_{2} r^{4}$ is much easier to invert than $f(r)=1+a_{1} r+a_{2} r^{2}+a_{3} r^{3}+a_{4} r^{4}$. An inverse model is needed to get 3D points from image points and depth.
(Inverting f is required for calculating the viewing ray corresponding to an image point (un-projection), this is an important property for some algorithms, like tracking algorithms.)
