

Practical Course: Vision-based Navigation Summer term 2015

Premeeting

Dr. Jörg Stückler, Vladyslav Usenko, Jakob Engel, Prof. Dr. Daniel Cremers

Real-Time Camera Tracking and 3D Reconstruction Using Signed Distance Functions

Erik Bylow, Jürgen Sturm, Christian Kerl, Fredrik Kahl, Daniel Cremers

Robotics: Science and Systems (RSS)
June 2013

Computer Vision Group Department of Computer Science Technical University of Munich

LSD-SLAM: Large-Scale Direct Monocular SLAM

Jakob Engel, Thomas Schöps, Daniel Cremers **ECCV 2014, Zurich**

Computer Vision Group Department of Computer Science Technical University of Munich

Content of this Course

- You can gain practical experience with
 - Visual odometry and localization/state estimation
 - Vision-based Simultaneous Localization and Mapping (SLAM)
 - Vision-based control of quadrocopters or wheeled robots
- Implementation of algorithms
- Benefits/drawbacks of specific methods when applied to concrete, relevant problems
- Learn how to work in teams/on projects
- Improve your presentation skills

Course Organisation

- Course takes place during the lecture period
- Initial phase (first 4-5 weeks): Lectures & Exercises
 - Mondays 1pm to 3pm in seminar room 02.09.023
 - Programming assignments will be handed out every week and checked/graded by the tutors
 - Small groups, each participant should be able to explain their solution
 - Attendance to lecture & exercise sessions mandatory
- Second phase (remainder): Project
 - Work in small groups (2-3 people) on a project
 - Lab 02.05.014 available; tutors available Mondays 1pm-5pm
 - Implement a specific algorithm, which one tbd.
 - Present project outcome in talk&demo session (15min per group)
 - Written report on project outcome (10-12 pages, single column, single-spaced lines, 11 pt)

Course Requirements

- Good knowledge of the C/C++ language and basic mathematics such as linear algebra, analysis, stochastics, and numerics is required
- Prior practical knowledge in CUDA programming, robotics, and computer vision topics is a plus
- Participation in at least one of the following lectures of the TUM Computer Vision Group: Variational Methods for Computer Vision, Multiple View Geometry, Autonomous Navigation for Flying Robots. Similar lectures can also be accepted

Course Registration

- You apply for courses through the matching system in TUMOnline: 30. January - 3. February 2015
 - List your preference on courses
 - Please specify how you meet the course requirements / if you have attended any related computer vision courses before!
- Matching Results: 10. February 2015
- Post-application: 11. February 13. February 2015
- Enrollment: 14. February 2015
- We can only guarantee places to students assigned through the matching process (and fitting the course requirements)!!

Questions?