
Visual Navigation for Flying Robots Computer Vision Group
D. Cremers, J. Stückler, V. Usenko, J. Engel Department of Informatics
Summer Term 2015 Technical University of Munich

Sheet 4
Topic: Robot State Estimation and Control

Submission deadline: Monday, 18.05.2015, 12:00
Hand-in via email to visnav15@vision.in.tum.de

General Notice

The exercises should be done in teams of two to three students. Each student in a
team must be able to present the solution to the tutors during the exercise sessions
on a lab PC in room 02.05.014. The presentations and solutions will be graded
and will count for the final grade of the lab course. If you have not yet done so,
please register yourself together with your team members on the team list in room
02.05.14.

We will use ROS Indigo on Ubuntu 14.04 in this lab course. It is already installed on
the lab computers. If you want to use your own laptop, you will need to install these
versions of Ubuntu and ROS. Please read the ROS and OpenCV documentation for
further reference.

Introduction

The goal of this exercise is to acquire practical experience with controlling a flying
robot in a simulator. You will estimate the robot position using IMU and 6D pose
sensors and write a simple PID controller to make the robot hover on spot and resist
external disturbances.

Exercise 1:

Download the code sample for this exercise provided on the course website:

• https://vision.cs.tum.edu/teaching/ss2015/visnav_ss2015/slides

To get you started, it contains a flying robot simulator and a solution skeleton code.

In this exercise you will implement a position PID controller for the flying robot
assuming the ground truth pose of the robot’s center of mass is available.

(a) Get familiar with the simulator and the skeleton code of the exercise. Launch
the simulator by running the following command:

roslaunch euroc_simulation_server ex4_setting1.launch

Launch the exercise solution in a different terminal:

1

https://vision.cs.tum.edu/teaching/ss2015/visnav_ss2015/slides


roslaunch ex4_solution ex4.launch

Verify that launching the solution unpauses the simulator and it starts pub-
lishing messages. What messages does the simulator publish? What are the
frequencies of these messages?

(b) Inspect the uav controller.hpp class in the solution source code. In the con-
structor this class initializes some constants, such as gravity, robot mass, noise
characteristics of the sensor. After that it initializes publishers and subscribers
and unpauses the simulator. The groundTruthPoseCallback function receives
the ground truth pose from the simulator, computes the velocity and stores
pose and velocity in the class variables. The getPoseAndVelocity function re-
turns the current estimate of pose and velocity. It will be used later to switch
easily between ground truth measurements and filter output.

(c) Fill the computeDesiredForce function with the code to compute the desired
force using the PID controller for hovering at (0,0,1) with zero velocity. The
desired force can be computed using the following formula:

ẍ = kp(xd − x) + kd(ẋd − ẋ) + ki

∫
(xd − x)dt,

where xd and ẋd are desired position and velocity, x and ẋ are current position
and velocity and kp, kd, ki are proportional, differential and integral gains of
the PID controller.

(d) The simulator provides a low-level controller for the robot that expects a com-
mand consisting of desired roll, pitch angles, trust values and yaw rate and
control the motors to maintain the desired values. Fill the computeCommand-
FromForce function with the code to compute desired roll, pitch angles and
thrust. For this exercise you can set the yaw rate to zero. To obtain roll pitch
and thrust you can use the following equations:

φd =
1

g
(ẍ1 sinψ − ẍ2 cosψ),

θd =
1

g
(ẍ1 cosψ + ẍ2 sinψ),

Td = ẍ3 +mg,

where φd is desired roll angle, θd desired pitch angle, Td desired thrust and ψ
current yaw angle.

(e) Write a sendControlSignal function that will obtain a current pose and ve-
locity estimate from getPoseAndVelocity function, compute the desired force
with computeDesiredForce function, transform it into the message with com-
puteCommandFromForce and publish it.

(f) Publish the control message with the rate of the most high frequency sensor.
You can for example call the sendControlSignal in the end of IMU callback.

2



(g) Test the controller in different settings (ex4 setting1.launch, ex4 setting2.launch,
ex4 setting3.launch). In the setting 1 no external forces are applied to the
robot, in the setting 2 at 40s second of the simulation a constant wind starts
blowing and in setting 3 the wind gust blows just several seconds and then
stops. Tune the PID controller such that the robot maintains a stable flight
in all those settings.

Exercise 2:

In this exercise you will implement a UKF filter that will fuse noisy measurements
from the sensors running at different frequencies to get a reliable estimate of the
robot state. The simulator will provide you messages from two sensors: IMU that
is mounted approximately in the center of mass and provides high-frequency mea-
surements that are subject to Gaussian noise and have a constant bias; Generic 6D
pose sensor which is mounted with some offset from the center of mass, provides
low-frequency measurements that are subject to Gaussian noise.

(a) Inspect the se3ukf.hpp class in the solution source code. In particular have a
look at compute sigma points, compute mean and compute mean and covariance
functions. The first of them computes sigma points from the current mean and
covariance, the other two perform reverse operation. They compute new mean
and covariance from the current sigma points.

(b) Implement the predict function that computes the predicted state distribution
from the current state distribution and IMU measurements. To do that you
should first compute the sigma points of the current state, for each of the sigma
points apply the IMU motion model, compute new mean and covariance from
the transformed sigma points. Assuming the IMU is located close to the center
of mass you can use the following IMU model:

pt+1 = pt + vt∆t,

vt+1 = vt + (Rt(a− bat)− g)∆t,

Rt+1 = Rt exp(ω − bωt),

where p is position, R ∈ SO(3) is orientation and v is velocity of the IMU
expressed in the world coordinate frame; a and ω represent accelerometer and
gyroscope measurements, and ba and bω represent their biases accordingly.

(c) Fill the measurePose function to apply 6D measurements to the filter.

(d) Add UKF filter to the UAVController class. Initialize it with provided initial
pose and covariance. Fill imuCallback and pose1Callback to fuse the sensor
measurements using the UKF. Please note that the coordinate frame of the
6D pose sensor is not the same as the IMU coordinate frame, so you should
first transform the measurements to the IMU frame using the transformation
T imu cam that is provided in the UAVController class.

3



(e) Change the getPoseAndVelocity function to provide the pose and velocity
estimates from UKF when use ground thruth data variable is set to false.

(f) Test your controller from the Exercise 1 with the UKF state estimation in-
stead of ground truth values. Verify that it works in different settings. What
difference do you observe compared to the controller that works with ground
truth?

(g) Verify that your controller now works without ground truth pose. For that
you can launch the simulator as follows:

roslaunch euroc_simulation_server ex4_setting1.launch

enable_ground_truth :=false

Submission instructions

A complete submission consists both of a PDF file with the solutions/answers to
the questions on the exercise sheet and a ZIP file containing the source code that
you used to solve the given problems. Note all names of your team members in the
PDF file. Make sure that your ZIP file contains all files necessary to compile and
run your code, but it should not contain any build files or binaries. Please submit
your solution via email to visnav15@vision.in.tum.de.

4


