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What we will cover today

 Introduction to visual motion estimation approaches

 Visual odometry (VO) vs. visual SLAM

 Overview on VO approaches for monocular, stereo, RGB-D 
cameras

 The notions of sparse, dense, and direct

 Sparse, keypoint-based visual odometry
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The Term “Visual Odometry”

 Odometry: 

 Greek: „hodos“ – path, „metron“ –
measurement

 Motion or position estimation from
measurements or controls

 Typical example: wheel encoders

 Visual Odometry (VO):

 1980-2004: Dominant research by NASA 
JPL for Mars exploration rovers (Spirit 
and Opportunity in 2004) 

 David Nister‘s „Visual Odometry“ paper
from 2004 about keypoint-based
methods for monocular and stereo
cameras
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Visual Odometry

 VO is often used to complement other motion
sensors
 GPS

 Inertial Measurement Units (IMUs)

 Wheel odometry

 etc.

 Important in GPS-denied environments (indoors, 
underwater, etc.)

 Relation to Visual Simultaneous Localization and
Mapping (SLAM): 
 Local (VO) vs. global (VSLAM) consistency

 VO: 3D reconstruction only at local scale (if at all)

 VO: Real-time requirements
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Sensors for Visual Odometry

 Monocular:
 Pros: Low-power, light-weight, low-cost, simple to

calibrate and use

 Cons: requires motion parallax and textured
scenes, scale not observable

 Stereo:
 Pros: depth without motion, less power than

active structured light

 Cons: requires textured scenes, accuracy
depends on baseline, requires extrinsic calibration
of the cameras, synchronization of the cameras

 Active RGB-D sensors:
 Pros: also work in untextured scenes, similar to

stereo processing

 Cons: active sensing consumes power, blackbox
depth estimation
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Keypoints, Direct, Sparse, Dense
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 Sparse: use a small set of selected pixels (keypoints)

 Dense: use all (valid) pixels

Keypoint-based Direct



Sparse Keypoint-based Visual Odometry
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R, t ?

Extract and match
keypoints

Determine relative 
camera pose (R, t) 
from keypoint matches



Keypoint Extraction
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 Detection repeatability

 We want to find the (accurate) 
image of the same 3D point
from different view-points

 Descriptor distinctiveness

 We want a descriptor that
achieves (in the ideal case) a 
unique and correct
association of corresponding
keypoints



Keypoint Detectors and Descriptors
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 Keypoint detection and description in images has been extensively studied

 Nowadays there is plenty of fast and repeatable detectors available, e.g.,

 Harris corner variants

 FAST corner variants (e.g. ORB detector)

 DoG blob variants (SIFT, SURF)

 Learning-based keypoints

 Many detectors come with a suitable descriptor, e.g.,

 ORB (binary pixel comparisons locally around keypoint)

 SIFT/SURF (grayscale gradient patterns locally around keypoint)



Monocular Keypoint-based Motion Estimation
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 In the monocular case, we do not have depth
available at keypoints

 If we knew the relative pose of the cameras and
the 3D position of each keypoint match, we could
directly compute to which pixels the keypoints
should project in each camera image

 To find the unknown pose and 3D positions, we
could formulate an optimization problem that
minimizes the reprojection error of all keypoints

 Reprojection error: difference between measured
and expected pixel position of a keypoint

R, t ?

Uniqueness?
Non-linear projection?
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1

𝑁
 

𝑖

𝑧1,𝑖 − 𝜋(𝑥𝑖) 2

2
+ 𝑧2,𝑖 − 𝜋(𝑅𝑥𝑖 + 𝑡)

2

2

𝑐1 𝑐2



Motion from Epipolar Geometry
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 An alternative is to examine
epipolar geometry more closely

 The rays from each camera to the keypoint and the baseline t are coplanar!

 The essential matrix captures the relative camera pose

 Each keypoint match provides an „epipolar constraint“

 8 matches suffice to determine (8-point algorithm)

 In the uncalibrated case, the camera calibration needs to be subsumed into
the so-called fundamental matrix

 𝑥1
𝑇 𝑡 × 𝑅  𝑥2 = 0 ↔  𝑥1

𝑇[𝑡]×𝑅  𝑥2 = 0

𝐸 = [𝑡]×𝑅

𝑡
 𝑥1

𝑅  𝑥2

𝑐1
𝑐2

𝐸

𝐹 = 𝐾−𝑇𝐸𝐾−1



8-Point Algorithm (Longuet-Higgins, 1981)
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 Find approximation to essential matrix:

 Construct matrix 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑁)𝑇 with 𝑎𝑖 =  𝑥1,𝑖 ×  𝑥2,𝑖. 

 Apply a singular value decomposition (SVD) on A = US𝑉𝑇 and unstack the 9th 
column vector of 𝑉 into  𝐸

 Project the approximate  𝐸 into the (normalized) essential space: 
Determine the SVD of  𝐸 = 𝑈 diag(𝜎1, 𝜎2, 𝜎3) 𝑉𝑇and replace the singular values
𝜎1, 𝜎2, 𝜎3 with 1,1,0 to find 𝐸 = 𝑈 diag(1,1,0) 𝑉𝑇

 Determine one of the following 4 possible solutions that intersect the points in 
front of both cameras:

𝑅 = 𝑈 𝑅𝑍
𝑇 ±

𝜋

2
𝑉𝑇
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with 𝑅𝑍
𝑇 ±

𝜋

2
=

0 ±1 0
∓1 0 0
0 0 1



3D Keypoint-based Motion Estimation
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 In the stereo case, rotation and translation between the left and right image
are known

 We can first match keypoints between the left and right image, and
triangulate their 3D positions

 To estimate motion between two stereo image pairs, we could use the 8-
point algorithm as well on the keypoints in the left images and recover scale
from the triangulated stereo depth

 Alternatively, least-squares optimization of the reprojection error is now
simpler, since we know the 3D positions of the keypoints

𝐸 𝑅, 𝑡 =
1

𝑁
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Triangulation

 Given: n cameras

Point correspondence

 Wanted: Corresponding 3D point
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Triangulation

 Where do we expect to see                                ?

 Minimize the residuals
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Triangulation

 Multiply with denominator gives

Solve for                                   using:

 Linear least squares with W=1

 Linear least squares using SVD

 Non-linear least squares of the residuals 
(most accurate)
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Robust Keypoint Matching
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 Keypoint detectors and descriptors are not perfect

 Pose estimation can be very sensitive to wrong correspondences (especially
when using the 8-point algorithm)

 What can we do?

 Idea: try out different combinations of 8 matches until we find a good fit for
most of the overall keypoints

 Random Sample Consensus (RANSAC) algorithm



Example: Fit a line to 2D data containing outliers

 Input data is a mixture of

 Inliers (perturbed by Gaussian noise)

 Outliers (unknown distribution)

 Let’s fit a line using least squares…

Robust Estimation
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Example: Fit a line to 2D data containing outliers

 Input data is a mixture of

 Inliers (perturbed by Gaussian noise)

 Outliers (unknown distribution)

 Least squares fit gives poor results!

Robust Estimation
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RANdom SAmple Consensus (RANSAC)
[Fischler and Bolles, 1981]

Goal: Robustly fit a model to a data set     which contains outliers

Algorithm:

1. Randomly select a (minimal) subset 

2. Instantiate the model from it

3. Using this model, classify all data points as 
inliers or outliers

4. Repeat 1-3 for     iterations

5. Select the largest inlier set, and re-estimate the model from all 
points in this set
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Example

 Step 1: Sample a random subset

Dr. Jörg Stückler, Computer Vision Group, TUMVision-based Navigation 24



Example

 Step 2: Fit a model to this subset
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Example

 Step 3: Classify points as inliers and outliers (e.g., using a 
threshold distance)
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 10 inliers, 2 outliers



Example

 Step 4: Repeat steps 1-3 for N iterations
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Iteration 2:
 5 inliers, 7 outliers



Example

 Step 4: Repeat steps 1-3 for N iterations

Dr. Jörg Stückler, Computer Vision Group, TUMVision-based Navigation 28

Iteration 3:
 2 inliers, 10 outliers



Example

 Step 5: Select the best model (most inliers), then re-fit model 
using all inliers
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Best model:
Iteration 1
(10 inliers, 2 outliers)



How Many Iterations Do We Need?

 For a probability of success    , we need

for subset size    and outlier ratio 

 E.g., for p=0.99:
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iterations

Required points
s

Outlier ratio ε

10 % 20 % 30 % 40 % 50 % 60 % 70 %

Line 2 3 5 7 11 17 27 49

Plane 3 4 7 11 19 35 70 169

Essential matrix 8 9 26 78 272 1177 7025 70188



Summary on RANSAC

 Efficient algorithm to estimate a model from noisy and outlier-
contaminated data

 RANSAC is used today very widely

 Often used in feature matching / visual motion estimation

 Many improvements/variants (e.g., PROSAC, MLESAC, …)
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Lessons Learned Today

 Overview on visual odometry and SLAM

 How to estimate motion from keypoints from monocular 
images using the 8-point algorithm

 How to use the 8-point algorithm for stereo and RGB-D

 How to triangulate keypoint matches given the camera pose

 How to separate inliers from outliers using RANSAC
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Questions ?


