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What we will cover today

 Introduction to visual motion estimation approaches

 Visual odometry (VO) vs. visual SLAM

 Overview on VO approaches for monocular, stereo, RGB-D 
cameras

 The notions of sparse, dense, and direct

 Sparse, keypoint-based visual odometry
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The Term “Visual Odometry”

 Odometry: 

 Greek: „hodos“ – path, „metron“ –
measurement

 Motion or position estimation from
measurements or controls

 Typical example: wheel encoders

 Visual Odometry (VO):

 1980-2004: Dominant research by NASA 
JPL for Mars exploration rovers (Spirit 
and Opportunity in 2004) 

 David Nister‘s „Visual Odometry“ paper
from 2004 about keypoint-based
methods for monocular and stereo
cameras
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Visual Odometry

 VO is often used to complement other motion
sensors
 GPS

 Inertial Measurement Units (IMUs)

 Wheel odometry

 etc.

 Important in GPS-denied environments (indoors, 
underwater, etc.)

 Relation to Visual Simultaneous Localization and
Mapping (SLAM): 
 Local (VO) vs. global (VSLAM) consistency

 VO: 3D reconstruction only at local scale (if at all)

 VO: Real-time requirements
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Sensors for Visual Odometry

 Monocular:
 Pros: Low-power, light-weight, low-cost, simple to

calibrate and use

 Cons: requires motion parallax and textured
scenes, scale not observable

 Stereo:
 Pros: depth without motion, less power than

active structured light

 Cons: requires textured scenes, accuracy
depends on baseline, requires extrinsic calibration
of the cameras, synchronization of the cameras

 Active RGB-D sensors:
 Pros: also work in untextured scenes, similar to

stereo processing

 Cons: active sensing consumes power, blackbox
depth estimation
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Keypoints, Direct, Sparse, Dense
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 Sparse: use a small set of selected pixels (keypoints)

 Dense: use all (valid) pixels

Keypoint-based Direct



Sparse Keypoint-based Visual Odometry
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R, t ?

Extract and match
keypoints

Determine relative 
camera pose (R, t) 
from keypoint matches



Keypoint Extraction
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 Detection repeatability

 We want to find the (accurate) 
image of the same 3D point
from different view-points

 Descriptor distinctiveness

 We want a descriptor that
achieves (in the ideal case) a 
unique and correct
association of corresponding
keypoints



Keypoint Detectors and Descriptors
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 Keypoint detection and description in images has been extensively studied

 Nowadays there is plenty of fast and repeatable detectors available, e.g.,

 Harris corner variants

 FAST corner variants (e.g. ORB detector)

 DoG blob variants (SIFT, SURF)

 Learning-based keypoints

 Many detectors come with a suitable descriptor, e.g.,

 ORB (binary pixel comparisons locally around keypoint)

 SIFT/SURF (grayscale gradient patterns locally around keypoint)



Monocular Keypoint-based Motion Estimation
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 In the monocular case, we do not have depth
available at keypoints

 If we knew the relative pose of the cameras and
the 3D position of each keypoint match, we could
directly compute to which pixels the keypoints
should project in each camera image

 To find the unknown pose and 3D positions, we
could formulate an optimization problem that
minimizes the reprojection error of all keypoints

 Reprojection error: difference between measured
and expected pixel position of a keypoint

R, t ?

Uniqueness?
Non-linear projection?

𝐸 𝑅, 𝑡, 𝑥1, … , 𝑥𝑁 =
1

𝑁
 

𝑖

𝑧1,𝑖 − 𝜋(𝑥𝑖) 2

2
+ 𝑧2,𝑖 − 𝜋(𝑅𝑥𝑖 + 𝑡)

2

2

𝑐1 𝑐2



Motion from Epipolar Geometry
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 An alternative is to examine
epipolar geometry more closely

 The rays from each camera to the keypoint and the baseline t are coplanar!

 The essential matrix captures the relative camera pose

 Each keypoint match provides an „epipolar constraint“

 8 matches suffice to determine (8-point algorithm)

 In the uncalibrated case, the camera calibration needs to be subsumed into
the so-called fundamental matrix

 𝑥1
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8-Point Algorithm (Longuet-Higgins, 1981)
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 Find approximation to essential matrix:

 Construct matrix 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑁)𝑇 with 𝑎𝑖 =  𝑥1,𝑖 ×  𝑥2,𝑖. 

 Apply a singular value decomposition (SVD) on A = US𝑉𝑇 and unstack the 9th 
column vector of 𝑉 into  𝐸

 Project the approximate  𝐸 into the (normalized) essential space: 
Determine the SVD of  𝐸 = 𝑈 diag(𝜎1, 𝜎2, 𝜎3) 𝑉𝑇and replace the singular values
𝜎1, 𝜎2, 𝜎3 with 1,1,0 to find 𝐸 = 𝑈 diag(1,1,0) 𝑉𝑇

 Determine one of the following 4 possible solutions that intersect the points in 
front of both cameras:
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3D Keypoint-based Motion Estimation
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 In the stereo case, rotation and translation between the left and right image
are known

 We can first match keypoints between the left and right image, and
triangulate their 3D positions

 To estimate motion between two stereo image pairs, we could use the 8-
point algorithm as well on the keypoints in the left images and recover scale
from the triangulated stereo depth

 Alternatively, least-squares optimization of the reprojection error is now
simpler, since we know the 3D positions of the keypoints
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Triangulation

 Given: n cameras

Point correspondence

 Wanted: Corresponding 3D point
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Triangulation

 Where do we expect to see                                ?

 Minimize the residuals
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Triangulation

 Multiply with denominator gives

Solve for                                   using:

 Linear least squares with W=1

 Linear least squares using SVD

 Non-linear least squares of the residuals 
(most accurate)
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Robust Keypoint Matching
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 Keypoint detectors and descriptors are not perfect

 Pose estimation can be very sensitive to wrong correspondences (especially
when using the 8-point algorithm)

 What can we do?

 Idea: try out different combinations of 8 matches until we find a good fit for
most of the overall keypoints

 Random Sample Consensus (RANSAC) algorithm



Example: Fit a line to 2D data containing outliers

 Input data is a mixture of

 Inliers (perturbed by Gaussian noise)

 Outliers (unknown distribution)

 Let’s fit a line using least squares…

Robust Estimation
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Example: Fit a line to 2D data containing outliers

 Input data is a mixture of

 Inliers (perturbed by Gaussian noise)

 Outliers (unknown distribution)

 Least squares fit gives poor results!

Robust Estimation
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RANdom SAmple Consensus (RANSAC)
[Fischler and Bolles, 1981]

Goal: Robustly fit a model to a data set     which contains outliers

Algorithm:

1. Randomly select a (minimal) subset 

2. Instantiate the model from it

3. Using this model, classify all data points as 
inliers or outliers

4. Repeat 1-3 for     iterations

5. Select the largest inlier set, and re-estimate the model from all 
points in this set
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Example

 Step 1: Sample a random subset
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Example

 Step 2: Fit a model to this subset
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Example

 Step 3: Classify points as inliers and outliers (e.g., using a 
threshold distance)
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 10 inliers, 2 outliers



Example

 Step 4: Repeat steps 1-3 for N iterations
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Iteration 2:
 5 inliers, 7 outliers



Example

 Step 4: Repeat steps 1-3 for N iterations
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Iteration 3:
 2 inliers, 10 outliers



Example

 Step 5: Select the best model (most inliers), then re-fit model 
using all inliers
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Best model:
Iteration 1
(10 inliers, 2 outliers)



How Many Iterations Do We Need?

 For a probability of success    , we need

for subset size    and outlier ratio 

 E.g., for p=0.99:
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iterations

Required points
s

Outlier ratio ε

10 % 20 % 30 % 40 % 50 % 60 % 70 %

Line 2 3 5 7 11 17 27 49

Plane 3 4 7 11 19 35 70 169

Essential matrix 8 9 26 78 272 1177 7025 70188



Summary on RANSAC

 Efficient algorithm to estimate a model from noisy and outlier-
contaminated data

 RANSAC is used today very widely

 Often used in feature matching / visual motion estimation

 Many improvements/variants (e.g., PROSAC, MLESAC, …)
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Lessons Learned Today

 Overview on visual odometry and SLAM

 How to estimate motion from keypoints from monocular 
images using the 8-point algorithm

 How to use the 8-point algorithm for stereo and RGB-D

 How to triangulate keypoint matches given the camera pose

 How to separate inliers from outliers using RANSAC
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Questions ?


