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What we will cover today

* |ntroduction to visual motion estimation approaches
= Visual odometry (VO) vs. visual SLAM

= Qverview on VO approaches for monocular, stereo, RGB-D
cameras

= The notions of sparse, dense, and direct

= Sparse, keypoint-based visual odometry
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The Term “Visual Odometry”

= Odometry:

= Greek: ,hodos* - path, ,metron® -
measurement

= Motion or position estimation from
measurements or controls

= Typical example: wheel encoders

= Visual Odometry (VO):

= 1980-2004: Dominant research by NASA
JPL for Mars exploration rovers (Spirit
and Opportunity in 2004)

= David Nister‘s ,,Visual Odometry* paper
from 2004 about keypoint-based
methods for monocular and stereo
cameras
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Visual Odometry

= VO is often used to complement other motion
SEeNsors

= GPS

= |nertial Measurement Units (IMUs)
= Wheel odometry

= etc.

= |mportant in GPS-denied environments (indoors,
underwater, etc.)

= Relation to Visual Simultaneous Localization and
Mapping (SLAM):
» Local (VO) vs. global (VSLAM) consistency
= VO: 3D reconstruction only at local scale (if at all)
= VO: Real-time requirements

Vision-based Navigation 7 Dr. Jorg Stickler, Computer Vision Group, TUM



Sensors for Visual Odometry

= Monocular:
= Pros: Low-power, light-weight, low-cost, simple to
calibrate and use

= Cons: requires motion parallax and textured
scenes, scale not observable

= Stereo:

= Pros: depth without motion, less power than
active structured light

= Cons: requires textured scenes, accuracy
depends on baseline, requires extrinsic calibration
of the cameras, synchronization of the cameras

=  Active RGB-D sensors:

= Pros: also work in untextured scenes, similar to
stereo processing

= (Cons: active sensing consumes power, blackbox
depth estimation
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Keypoints, Direct, Sparse, Dense

Keypoint-based Direct
Input Input
Images - Images
Ik il ’
Extract & Match
Features
(SIFT/SURF/ ...)
<t ~7
abstract image to feature observations keep full images (no abstraction)
Track: A Track:
min. reprojection crror|.5 * min. photometric error
(poml distances) (intensity differences) »
v l K\ ?_J‘ 1':\ . 4
W " { '13 T" ‘,.'
N Map: : ‘ ~ Map:
est. feature-parameters =<3 est. per-pixel depth
(3D points / normals) 57 (semi-dense depth map)| |,

= Sparse: use a small set of selected pixels (keypoints)
= Dense: use all (valid) pixels
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Sparse Keypoint-based Visual Odometry

Extract and match

= \fo )
’ 1 keypoints

Determine relative
camera pose (R, t)
from keypoint matches
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Keypoint Extraction

= Detection repeatability

= We want to find the (accurate)
image of the same 3D point
from different view-points

= Descriptor distinctiveness

= We want a descriptor that
achieves (in the ideal case) a
unique and correct
association of corresponding
keypoints
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Keypoint Detectors and Descriptors

= Keypoint detection and description in images has been extensively studied

= Nowadays there is plenty of fast and repeatable detectors available, e.g.,
= Harris corner variants
= FAST corner variants (e.g. ORB detector)
= DoG blob variants (SIFT, SURF)
= |earning-based keypoints

= Many detectors come with a suitable descriptor, e.g.,

= ORB (binary pixel comparisons locally around keypoint)
= SIFT/SURF (grayscale gradient patterns locally around keypoint)
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Monocular Keypoint-based Motion Estimation

In the monocular case, we do not have depth
available at keypoints

If we knew the relative pose of the cameras and
the 3D position of each keypoint match, we could
directly compute to which pixels the keypoints
should project in each camera image

To find the unknown pose and 3D positions, we
could formulate an optimization problem that
minimizes the reprojection error of all keypoints

1
E(R, t,Xq, ..., xy) = NEHZU — ﬂ(xi)”i + ||z — m(Rx; + t)llz
7

Unigueness?

Reprojection error: difference between measured Non-linear projection?

and expected pixel position of a keypoint
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Motion from Epipolar Geometry

An alternative is to examine
epipolar geometry more closely

A

The rays from each camera to the keypoint and the baseline t are coplanar!

C1

X1 (t X RX,) =0 o xI[t]xRX, =0

The essential matrix E = [t](R captures the relative camera pose
Each keypoint match provides an ,epipolar constraint*
8 matches suffice to determine E (8-point algorithm)

In the uncalibrated case, the camera calibration needs to be subsumed into
the so-called fundamental matrix F = K- TEK™1
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8-Point Algorithm (Longuet-Higgins, 1981)

= Find approximation to essential matrix:
= Construct matrix A = (ay,ay, ..., ay)" with a; = &1 ; X %,;.

= Apply a singular value decomposition (SVD) on A = USVT and unstack the 9th
column vector of V into E

= Project the approximate E into the (normalized) essential space:
Determine the SVD of E = U diag(ay, 05, 03) VTand replace the singular values
01, 05,03 With 1,1,0 to find E = U diag(1,1,0) VT

= Determine one of the following 4 possible solutions that intersect the points in
front of both cameras:

T T T
- with RZ (i E) =(¥1 0 0)
[t]x = UR, (i E) diag(1,1,0)UT 0 0 1
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3D Keypoint-based Motion Estimation

» |n the stereo case, rotation and translation between the left and right image
are known

= We can first match keypoints between the left and right image, and
triangulate their 3D positions

= To estimate motion between two stereo image pairs, we could use the 8-
point algorithm as well on the keypoints in the left images and recover scale
from the triangulated stereo depth

= Alternatively, least-squares optimization of the reprojection error is now
simpler, since we know the 3D positions of the keypoints

1
E(R,t) = NE”Z“ —m(RTx; — RTt)”i + |22 — m(Rx; + t)llz
i
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Triangulation

= Given: n cameras {M; = K;(R; t;)}
Point correspondence X0, X
= Wanted: Corresponding 3D point P
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Triangulation

» Where do we expecttosee p= (XY Z W)'?

mllX + mng -+ m13Z -+ mMVV . TT?QlX + mggy + ?TEQSZ + TTEQ,;IH”T
Mg X + MgoY + Mg + Mg W Moy X + MgsY + MgsZ + Mg, W

'y

=
= Minimize the residuals

" = arg min d(x:,%;)?
p g ) ; (x5,%;)
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Triangulation

= Multiply with denominator gives

0= (x;ms1 —mi11)X + (x;msa — m12)Y + (xjmsz — mi3)Z + (zjmss — miag)W

0= (yjma1 — ma1)X + (yjms2 — ma2)Y + (y;mss — ma3)Z + (y;msq — mag)W

Solvefor p= (XY ZW)' using:
* Linear least squares with W=1
* Linear least squares using SVD

= Non-linear least squares of the residuals
(most accurate)
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Robust Keypoint Matching

3 |

o (i bp ¢ —

= Keypoint detectors and descriptors are not perfect

» Pose estimation can be very sensitive to wrong correspondences (especially
when using the 8-point algorithm)

= What can we do?

= |dea: try out different combinations of 8 matches until we find a good fit for
most of the overall keypoints

= Random Sample Consensus (RANSAC) algorithm
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Robust Estimation

Example: Fit a line to 2D data containing outliers

* |nput data is a mixture of
* |nliers (perturbed by Gaussian noise)
= Qutliers (unknown distribution)

= Let’s fit a line using least squares...
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Robust Estimation

Example: Fit a line to 2D data containing outliers

* |nput data is a mixture of
* |nliers (perturbed by Gaussian noise)
= Qutliers (unknown distribution)

= [east squares fit gives poor results!
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RANdom SAmple Consensus (RANSAC)
[Fischler and Bolles, 1981]

Goal: Robustly fit a model to a data set .S which contains outliers
Algorithm:

1. Randomly select a (minimal) subset

2. Instantiate the model from it

3. Using this model, classify all data points as
inliers or outliers

4. Repeat 1-3 for [V iterations

5. Select the largest inlier set, and re-estimate the model from all
points in this set
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Example

= Step 1: Sample a random subset
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Example

= Step 2: Fit a model to this subset
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Example

= Step 3: Classify points as inliers and outliers (e.g., using a
threshold distance)

- 10 inliers, 2 outliers
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Example

= Step 4: Repeat steps 1-3 for N iterations

° Iteration 2:
= Sinliers, 7 outliers
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Example

= Step 4: Repeat steps 1-3 for N iterations

o Iteration 3:
= 2 inliers, 10 outliers
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Example

= Step 5: Select the best model (most inliers), then re-fit model
using all inliers

A
o
Best model:
Iteration 1
(10 inliers, 2 outliers)
= ()
>
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How Many Iterations Do We Need?

= For a probability of success p, we need

_ log(1—p)
log(1 — (1 — €)?)
for subset size s and outlier ratio ¢

= E.g., for p=0.99:

iterations

N

Required points Outlier ratio €

S 10% 20% 30% 40% 50% 60% 70%
Line 2 3 5 7 11 17 27 49
Plane 3 4 7 11 19 35 70 169
Essential matrix 8 9 26 78 272 1177 7025 70188
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Summary on RANSAC

= Efficient algorithm to estimate a model from noisy and outlier-
contaminated data

= RANSAC is used today very widely
= Often used in feature matching / visual motion estimation
= Many improvements/variants (e.g., PROSAC, MLESAGC, ...
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Lessons Learned Today

= QOverview on visual odometry and SLAM

= How to estimate motion from keypoints from monocular
iImages using the 8-point algorithm

= How to use the 8-point algorithm for stereo and RGB-D
= How to triangulate keypoint matches given the camera pose
= How to separate inliers from outliers using RANSAC
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Questions ?



