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What we will cover today

= Direct, dense motion estimation
= Motion representation using the SE(3) Lie algebra
= Non-linear least squares optimization
= Direct RGB-D odometry
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Direct Visual Odometry with RGB-D Cameras

Robust Odometry Estimation
for RGB-D Cameras

Christian Kerl, Jurgen Sturm, Daniel Cremers

Computer Vision and Pattern Recognition Group
Department of Computer Science
Technical University of Munich
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Keypoint-based

Keypoint-based vs. Direct VO Methods

Direct

Input Input
Images - Images
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= Sparse: use a small set of selected pixels (keypoints)
= Dense: use all (valid) pixels
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Problem with Keypoint-based Methods

Vision-based Navigation 5 Dr. Jorg Stickler, Computer Vision Group, TUM



Special Euclidean Group SE(3)

= Not all matrices are transformation matrices: Transformation
matrices have a special structure

T:(IO{ ;)eSE(?))cR‘lx‘l

= Translation t has 3 degrees of freedom
= Rotation R has 3 degrees of freedom

= They form a group which we call SE(3). The group operator is
matrix multiplication:

.: SE(3) x SE(3) — SE(3)
T4 - TS — T4

= The operator is associative, but not commutative!
= There is also an inverse and a neutral element
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Parametrizations of SE(3)

= Translation t has 3 degrees of freedom
= Rotation R has 3 degrees of freedom

T:(IO{ '{)eSE(g)cR‘lX‘l

= Different parametrizations 6 of T(6)
= Direct matrix representation
= Quaternion / translation
* Axis,angle / translation
= Later: Twist coordinates in Lie Algebra se(3) of SE(3)
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Pose Parametrization for Optimization

= Let’s say we want to optimize a cost function £ (6) for the
pose 6 in some parametrization

= Weneedtoset VoE(0) =0

which we can tackle using gradient descent (or higher-order
methods) by making steps on 0

0 < 0 — AVoE(0)

= When we determine the derivative of £(0) , we will require the
derivative of T(€) for @ , which should have no singularities

= We also update the pose parametrization, which requires a
minimal representation
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SE(3) Lie Algebra for Representing Motion

Lie algebra £ = ( L: ) c R
€ € se(3)
weR &= [w]

o X
3
/log veR

. W v 44
5._(0 0>ER

= SE(3) is also a smooth manifold which makes it a Lie group

= The SE(3) Lie Algebra se(3) provides an elegant way to parametrize
poses for optimization

= |ts elements E € se(3) form the tangent space of SE(3) at its
identity I € SE(3)
= The se(3) elements can be interpreted as rotational and translational

velocities applied for some duration (twist) that explain the
infinitesimal motion away from the identity transformation

exp /
Lie group

T € SE(3)

I € SE(3)
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Exponential Map of SE(3)

Lie algebra

£ € se(3)

/ log

exp /

Lie group

T € SE(3)

I € SE(3)

= The exponential map finds the transformation matrix for a twist:
SIOR G

sinjw| . 1 —cos|w|
W

w] o]’

exp (w) =1+
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Logarithm Map of SE(3)

Lie algebra

£ € se(3)

/ log

exp /

Lie group

T € SE(3)

I € SE(3)

= The logarithm maps twists to transformation matrices:

log (T) — ( logéR) A;t )

> ~ 2sin o]

w| = cos™! (tr (R) - 1) log (R) | (R-R")
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Optimization with Twist Coordinates

= How are twists useful in optimization?

= They provide a minimal representation without singularities close to
identity

= Since SE(3) is a smooth manifold, we can decompose T(£)
in each optimization step into the transformation itself and a small
increment (could be left or right-multiplied):

T(§) := T(§)T(o§)

= Gradient descent operates on the auxiliary variable o0&

0 < 0 — Ve E(6)
E +— log (exp (E) exp (32))
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SE(3) Lie Algebra for Representing Motion

= C++ implementation: Sophus extension library for Eigen,
by Hauke Strasdat, https://github.com/strasdat/Sophus

= Further reading on motion representation using the SE(3) Lie
algebra:

* Yi Ma, Stefano Soatto, Jana Kosecka, Shankar S. Sastry. An
Invitation to 3-D Vision, Chapter 2: http://vision.ucla.edu/MASKS/

= http://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D t
echrep.pdf

» http://ethaneade.com/lie.pdf
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Dense Direct Image Alignment

= |f we know pixel depth, we can ,simulate” an RGB-D image from a different
view point
= |deally, the warped image is the same like the image taken from that pose:

I(x) = I(n(T(£) Z(x) K~'X))

= For RGB-D, we have the depth, but want to find the camera motion!
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Dense Direct Image Alignment

= Given a camera motion, we can find and compare corresponding
pixels through projection.

= \We measure in one image a noisy version of the intensity in the other
image:

I)(x) = L(n(T(§) Z(x) K X)) + e

= A simple assumption is Gaussian noise, e.g. if the noise only comes
from pixel noise on the chi
P P e~ N(0,0%)

= |If we further assume that the measurements are stochastically
independent at each pixel, we can formulate the joint probability

p(& |1, 1o) x p(Iy | € 12)p(€)
p€ | I, L) o< [ [V (11(x) — L(n(T(€) Z(x)K'X));0,07)

x€e
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Dense Direct Image Alignment

= Maximum-likelihood estimation problem
=  Optimize negative log-likelihood
»= Product becomes a summation

= Exponentials disappear
= Normalizers are independent of the pose

r(x, &)?
E(S):const.—l—%z ( ’2)

o)
xef) I

r(x,§) = Li(x) — L(n(T(§)Z(x) K 'X))

= This non-linear least squares error function can be efficiently
optimized using standard methods (Gauss-Newton, Levenberg-

Marquardt)
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Least Squares Optimization

= |f the residuals would be linear £, i.e., 7(§) = A+ b,
optimization would be simple, has a closed-form solution

= |n this case, the error function and its derivatives are

B(€) = 5r(€)"Wr(€)
V(€)= Ver(6) Wr(€) = ATWr(¢
V:E(€) = A"WA

= Setting the first derivative to zero yields

VeB(§) = VeE(&o) + VeE (&) (£ — &) =0
€ =& — Veb(&)  VeE(&)
£ =& — (ATWA)  ATWr(€,)
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Non-linear Least Squares Optimization

= |n direct image alignment, the residuals are non-linear in &

= Gauss-Newton method, iterate:
= |inearize residuals ff’(g) — 7«(50) + vsr(,g)(g — 50)

E(€) = ( &) Wr(§)
VeE(€) = Vg"“( §)" Wr(g)
VEE(€) = Ver(€)"WVer(€)

= Solve linearized system
VeE(€) = VeE(&) + ViE(&) (€ — &) =
€+ &~ VIE(&)IVE(E)
£ & — (Ver(&)TWVer(€)) ™ Ver(€)"Wr(€)
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Actual Residual Distribution

- Normal distribution
- Laplace distribution
- Student-t distribution

= The Gaussian noise assumption is not valid
= Many outliers (occlusions, motion, etc.)
= Residuals are distributed with more mass on the larger values
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Iteratively Reweighted Least Squares

10

- Normal distribution
- Laplace distribution
- Student-t distribution

w(r)r?

= Can we change the residual distribution in the least squares optimization?
= We can reweight the residuals in each iteration to adapt residual distribution

2 E.g., for Laplace distribution:

1 r(x, §)
BO =52 055 wirx) = )l
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Huber-Loss

= Huber-loss ,,switches” between normal (locally at mean) and
Laplace distribution

Ir||, = %HTHE if ||r|l, <0
’ 0 (||r]l, —359) otherwise

6! ] e Huber-loss for 0 =1
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Linearization of Image Alignment Residuals

= |n our direct image alignment case, the linearized residuals are

Ver(x,8) = =V la(n(p(x,£))) - Ven(p(x,§))

with p(x,€) =T(¢)Z(x)K'x
r(x,€§) = L(x) — L(r(p(x,§)))

= Linearization is only valid for motions that change the
projection in a small image neighborhood (where the gradient
hints into the direction)
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Coarse-To-Fine

= Adapt size of the neighborhood from coarse to fine

Coarse motion

Fine motion
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Covariance of the Pose Estimate

= Non-linear least squares determines
a Gaussian estimate

p&| i, I) =N (gaiﬁ) pIP!

B¢ = (Ver(§)"WVer(§))

= Due to pose decomposition, we have to change the coordinate frame
of the covariance using the adjoint in SE(3)

p(£ ‘ Il, IQ) — N (g, adT(E)f(sg)
Yse = (Vser(0€ = 0,€) WV ser (€ = ng))l

R [t|_ R
adT:<0 []Ix{ )ER6X6
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Lessons Learned

= The SE(3) Lie algebra is an elegant way of motion representation,
especially for gradient-based optimization of motion parameters

= Non-linear least squares optimization is a versatile tool that can be
applied for direct image alignment

= [teratively Reweighted Least Squares allows for overcoming the
limitation of basic least squares on the Gaussian residual
distribution/L2 loss on the residuals

= Dense RGB-D odometry through direct image alignment can be
implemented in a non-linear least squares framework.

= The linear approximation of the residuals requires a coarse-to-fine
optimization scheme

= Non-linear least squares also provides the pose covariance



Questions ?



