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What we will cover today

 Direct, dense motion estimation

 Motion representation using the SE(3) Lie algebra

 Non-linear least squares optimization

 Direct RGB-D odometry
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Direct Visual Odometry with RGB-D Cameras
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Keypoint-based vs. Direct VO Methods
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 Sparse: use a small set of selected pixels (keypoints)

 Dense: use all (valid) pixels

Keypoint-based Direct



Problem with Keypoint-based Methods
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 Not all matrices are transformation matrices: Transformation 
matrices have a special structure

 Translation      has 3 degrees of freedom

 Rotation       has 3 degrees of freedom

 They form a group which we call SE(3). The group operator is
matrix multiplication:

 The operator is associative, but not commutative!

 There is also an inverse and a neutral element
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Special Euclidean Group SE(3)

Dr. Jörg Stückler, Computer Vision Group, TUMVision-Based Navigation



 Translation      has 3 degrees of freedom

 Rotation       has 3 degrees of freedom

 Different parametrizations     of 

 Direct matrix representation

 Quaternion / translation

 Axis,angle / translation

 Later: Twist coordinates in Lie Algebra se(3) of SE(3)
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Parametrizations of SE(3)
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Pose Parametrization for Optimization

 Let’s say we want to optimize a cost function            for the 
pose      in some parametrization

 We need to set 

which we can tackle using gradient descent (or higher-order 
methods) by making steps on   

 When we determine the derivative of           , we will require the 
derivative of            for     , which should have no singularities

 We also update the pose parametrization, which requires a 
minimal representation
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SE(3) Lie Algebra for Representing Motion

 SE(3) is also a smooth manifold which makes it a Lie group

 The SE(3) Lie Algebra se(3) provides an elegant way to parametrize 
poses for optimization

 Its elements                  form the tangent space of SE(3) at its 
identity 

 The se(3) elements can be interpreted as rotational and translational 
velocities applied for some duration (twist) that explain the 
infinitesimal motion away from the identity transformation
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Exponential Map of SE(3)

 The exponential map finds the transformation matrix for a twist:
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Lie group
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Logarithm Map of SE(3)

 The logarithm maps twists to transformation matrices:
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Optimization with Twist Coordinates

 How are twists useful in optimization?

 They provide a minimal representation without singularities close to 
identity

 Since SE(3) is a smooth manifold, we can decompose 
in each optimization step into the transformation itself and a small 
increment (could be left or right-multiplied): 

 Gradient descent operates on the auxiliary variable
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SE(3) Lie Algebra for Representing Motion

 C++ implementation: Sophus extension library for Eigen, 
by Hauke Strasdat, https://github.com/strasdat/Sophus

 Further reading on motion representation using the SE(3) Lie
algebra:

 Yi Ma, Stefano Soatto, Jana Kosecka, Shankar S. Sastry. An 
Invitation to 3-D Vision, Chapter 2: http://vision.ucla.edu/MASKS/

 http://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D_t
echrep.pdf

 http://ethaneade.com/lie.pdf
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Dense Direct Image Alignment

 If we know pixel depth, we can „simulate“ an RGB-D image from a different 
view point

 Ideally, the warped image is the same like the image taken from that pose:

 For RGB-D, we have the depth, but want to find the camera motion!
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Dense Direct Image Alignment

 Given a camera motion, we can find and compare corresponding
pixels through projection. 

 We measure in one image a noisy version of the intensity in the other
image:

 A simple assumption is Gaussian noise, e.g. if the noise only comes
from pixel noise on the chip

 If we further assume that the measurements are stochastically
independent at each pixel, we can formulate the joint probability
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Dense Direct Image Alignment

 Maximum-likelihood estimation problem

 Optimize negative log-likelihood

 Product becomes a summation

 Exponentials disappear

 Normalizers are independent of the pose

 This non-linear least squares error function can be efficiently
optimized using standard methods (Gauss-Newton, Levenberg-
Marquardt)
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Least Squares Optimization

 If the residuals would be linear    , i.e.,                            , 
optimization would be simple, has a closed-form solution

 In this case, the error function and its derivatives are

 Setting the first derivative to zero yields
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Non-linear Least Squares Optimization

 In direct image alignment, the residuals are non-linear in

 Gauss-Newton method, iterate: 

 Linearize residuals

 Solve linearized system
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Actual Residual Distribution

 The Gaussian noise assumption is not valid

 Many outliers (occlusions, motion, etc.)

 Residuals are distributed with more mass on the larger values
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Iteratively Reweighted Least Squares

 Can we change the residual distribution in the least squares optimization?

 We can reweight the residuals in each iteration to adapt residual distribution
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E.g., for Laplace distribution:



Huber-Loss

 Huber-loss „switches“ between normal (locally at mean) and
Laplace distribution
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Huber-loss for = 1



Linearization of Image Alignment Residuals

 In our direct image alignment case, the linearized residuals are

with

 Linearization is only valid for motions that change the
projection in a small image neighborhood (where the gradient
hints into the direction)
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Coarse-To-Fine

 Adapt size of the neighborhood from coarse to fine
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Coarse motion

Fine motion



Covariance of the Pose Estimate

 Non-linear least squares determines
a Gaussian estimate

 Due to pose decomposition, we have to change the coordinate frame
of the covariance using the adjoint in SE(3)
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Lessons Learned

 The SE(3) Lie algebra is an elegant way of motion representation, 
especially for gradient-based optimization of motion parameters

 Non-linear least squares optimization is a versatile tool that can be
applied for direct image alignment

 Iteratively Reweighted Least Squares allows for overcoming the
limitation of basic least squares on the Gaussian residual 
distribution/L2 loss on the residuals

 Dense RGB-D odometry through direct image alignment can be
implemented in a non-linear least squares framework. 

 The linear approximation of the residuals requires a coarse-to-fine 
optimization scheme

 Non-linear least squares also provides the pose covariance
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Questions ?


