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What we will cover today

 Introduction to vision-based state estimation and control

 State estimation

 Bayes Filter

 Extended Kalman Filter

 Unscented Kalman Filter

 Control

 PID Control

 Cascaded Control
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The State Estimation Problem

We want to estimate the world state      from

1. Sensor measurements         and

2. Controls (or odometry readings)

Probabilistic filtering:

 How do we perform inference for the state?

 How do we model the relationship between these random 
variables?
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Probabilistic Measurement Model

 Measurements depend on the actual state, but robot sensors 
only provide noisy versions

 Quantify probability distribution on measurements (given state)

 Typical model: non-linear function of state and additive noise 

e.g. 

sensor
reading

world
state

measurement
function
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Probabilistic State-Transition Model

 Robot executes a control not accurately, i.e. the control 
outcome can only be predicted up to some uncertainty

 Quantify probability on control outcome (given prev. state)

 Typical model: non-linear function of control and prev. state 
with additive noise

e.g.
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Bayes Filter

 Given:

 Stream of measurements and controls:

 Measurement model

 State-transition model

 Prior probability of the system state

 Wanted:

 Estimate of the state      of the dynamic system

 Posterior of the state is also called belief
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Markov Assumption

 Measurements depend only on current state

 Current state depends only on prev. state and current control

 Underlying assumptions

 Static world

 Independent noise

 Perfect model, no approximation errors
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Bayes Filter

For each time step, do

1. Apply motion model

2. Apply sensor model
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Kalman Filter

 Bayes filter with 

 continuous states 

 Gaussian state variable and model noise

 Linear measurement and state-transition functions

 Extension to non-linear models (Extended Kalman Filter EKF)

 Developed in the late 1950’s

 Kalman filter is very efficient (only requires a few matrix 
operations per time step)

 Applications range from economics, weather forecasting, 
satellite navigation to robotics and many more

 Most relevant Bayes filter variant in practice 
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Normal Distribution

 Multivariate normal distribution

 Example: 2-dimensional normal distribution
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pdf iso lines
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Properties of Normal Distributions

 Linear transformation  remains Gaussian

 Intersection of two Gaussians  remains Gaussian
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Kalman Filter

Estimates the state      of a discrete-time controlled process that 
is governed by the linear stochastic difference equation

and (linear) measurements of the state

with                          and 

Initial belief is Gaussian
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From Bayes Filter to Kalman Filter

For each time step, do

1. Apply state-transition model
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From Bayes Filter to Kalman Filter

For each time step, do

2. Apply measurement model

with 
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Kalman Filter

For each time step, do

1. Apply state-transition model

2. Apply measurement model

with
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For the interested readers:
See Probabilistic Robotics for 
full derivation (Chapter 3)



Kalman Filter

 Highly efficient: Polynomial in the measurement dimensionality
k and state dimensionality n:

 Optimal for linear Gaussian systems!

 Most robotics systems are nonlinear! 
(i.e. nonlinear measurement and state-transition model)
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Taylor Expansion

 Solution: Linearize both functions

 State-transition function

 Measurement function
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Extended Kalman Filter

For each time step, do

1. Apply state-transition model

with

2. Apply measurement model

with                                                  and
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For the interested readers:
See Probabilistic Robotics for 
full derivation (Chapter 3)
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Example

 2D case

 State

 Odometry

 Measurements                           (relative to robot pose)
of visual marker at position

 Fixed time intervals
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Example

 State-transition function

 Derivative of state-transition function
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Example

 Measurement function
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Example
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 Dead reckoning (no measurements)

 Large process noise in x+y
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Example
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 Dead reckoning (no measurements)

 Large process noise in x+y+yaw
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Example

 Now with measurements (limited visibility)

 Assume robot knows correct starting pose
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Example

 What if the initial pose (x+y) is wrong?
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Example

 What if the initial pose (x+y+yaw) is wrong?
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Example
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 If we are aware of a bad initial guess, we set the initial 
covariance to a large value (large uncertainty)
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Example
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Linearization via Unscented Transform (1)

EKF UKF
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Linearization via Unscented Transform (2)

EKF UKF
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Linearization via Unscented Transform (3)

EKF UKF
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Unscented Transform
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Pass sigma points through nonlinear function

Recover mean and covariance
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matrix
square root

Unscented Transform on SE(3):
C. Hertzberg et al., “Integrating 
Generic Sensor Fusion Algorithms with 
Sound State Representations through 
Encapsulation of Manifolds”,
http://arxiv.org/pdf/1107.1119.pdf
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Cholesky Decomposition
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 Symmetric positive definite matrices (such as covariances) can 
be factored into

using the Cholesky decomposition.

 The matrix square root is defined as
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Unscented Kalman Filter – Prediction Step
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Unscented Kalman Filter – Correction Step
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Summary: State Estimation

 Probabilistic state estimation

 Uncertainty in measurement and state-transition

 Bayes filter

 Kalman filters 

 Linear KF for continuous Gaussian state variables and Gaussian 
model noise

 Linear KF is optimal (if model is valid)

 Extended KF: allow for non-linear measurement and state-
transition models

 Unscented KF: improve on linearization in EKF through 
unscented transform

 Efficient filtering techniques
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What we will cover today

 Introduction to vision-based state estimation and control

 State estimation

 Bayes Filter

 Extended Kalman Filter

 Unscented Kalman Filter

 Feedback Control

 PID Control

 Cascaded Control
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Feedback Control

 Given:

 Goal state

 Measured state (feedback)

 Wanted:

 Control signal      to reach goal state

 How to compute the control signal?
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Feedback Control - Generic Idea
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Desired 
value
35°
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Feedback Control - Generic Idea
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Plant (Regelstrecke)

Desired 
value
35°

Controller (Regler)
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Feedback Control - Generic Idea
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Feedback Control - Generic Idea
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Plant (Regelstrecke)

Desired 
value
35°

How hot is it?
Measured 
temperature

25°

35°

45°

Sensor

Controller (Regler)

25°

35°

45°

Error

How can we correct?

Turn hotter (not colder)
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Feedback Control - Example
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Controller Plant

Measurement
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Measurement Noise

 What effect has noise in the measurements?

 Poor performance for K=1

 How can we fix this?
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Proper Control with Measurement Noise

 Lower the gain… (K=0.15)
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What do High Gains do?

 High gains are always problematic (K=2.15)
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What happens if sign is messed up?

 Check K=-0.5
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Saturation

 In practice, often the set of admissible controls u is bounded

 This is called (control) saturation
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Measurement

Block Diagram

53

Controller
–

Plant
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Delays

 In practice most systems have delays

 Can lead to overshoots/oscillations/de-stabilization

 One solution: lower gains (why is this bad?)
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 What is the total dead time of this system?

Measurement

Delays
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Controller
–

Plant

100ms delay
in water pipe

50ms delay
in sensing

Dr. Jörg Stückler, Computer Vision Group, TUMVision-based Navigation



 What is the total dead time of this system?

 Can we distinguish delays in the measurement from delays in 
actuation?

Measurement

Delays
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Controller
–

Plant

100ms delay
in water pipe

50ms delay
in sensing
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 What is the total dead time of this system?

 Can we distinguish delays in the measurement from delays in 
actuation? No!

Delays
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Controller
–

Plant (and 
measurement)
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Localization
Position
Control

Robot
Next 

waypoint

Position Control
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Sensors Actuators

Physical 
World

forces
torques

position
velocity

acceleration

Kinematics
Dynamics
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Rigid Body Kinematics

 Consider a rigid body

 Free floating in 1D space, no gravity

 In each time instant, we can apply a force F

 Results in acceleration 

 Desired position
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P Control

 What happens for this control law?

 This is called proportional control
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P Control

 What happens for this control law?

 This is called proportional control
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PD Control

 What happens for this control law?

 Proportional-Derivative control
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PD Control

 What happens for this control law?

 What if we set higher gains? 
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PD Control

 What happens for this control law?

 What if we set lower gains? 
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PD Control

 What happens when we add gravity?

65 Dr. Jörg Stückler, Computer Vision Group, TUMVision-based Navigation



Gravity compensation

 Add as an additional term in the control law

 Any known (inverse) dynamics can be included

66 Dr. Jörg Stückler, Computer Vision Group, TUMVision-based Navigation



PD Control

 What happens when we have systematic errors? 
(control/sensor noise with non-zero mean)

 Example: unbalanced quadrocopter, wind, …

 Does the robot ever reach its desired location?
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add example plot
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PID Control

 Idea: Estimate the system error (bias) by integrating the error

 Proportional+Derivative+Integral Control
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add example plot
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PID Control

 Idea: Estimate the system error (bias) by integrating the error

 Proportional+Derivative+Integral Control

 For steady state systems, this can be reasonable

 Otherwise, it may create havoc or even disaster (wind-up 
effect)

69 Dr. Jörg Stückler, Computer Vision Group, TUMVision-based Navigation



Example: Wind-up effect

 Quadrocopter gets stuck in a tree  does not reach steady 
state

 What is the effect on the I-term?
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How to Choose the Coefficients?

 Gains too large: overshooting, oscillations

 Gains too small: long time to converge

 Heuristic methods exist

 In practice, often tuned manually
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De-coupled Control

 So far, we considered only single-input, single-output systems 
(SISO)

 Real systems have multiple inputs + outputs

 MIMO (multiple-input, multiple-output)

 In practice, control is often de-coupled
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Localization

Robot

Cascaded Control
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Assumptions of Cascaded Control

 Dynamics of inner loops is so fast that it is not visible from 
outer loops

 Dynamics of outer loops is so slow that it appears as static to 
the inner loops
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Cascaded control

 Inner loop runs on embedded PC and stabilizes flight

 Outer loop runs externally and implements position control

Example: Ardrone
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Inner loop PlantOuter loop

Ardrone (=seen as the plant by the outer loop)Laptop

wireless, approx. 15Hz

onboard, 1000Hz
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Ardrone: Inner Control Loop

 Plant input: motor torques

 Plant output: roll, pitch, yaw rate, z velocity
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attitude
(measured using gyro + 

accelerometer)

altitude
(measured using ultrasonic
distance sensor + attitude)
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Ardrone: Inner Control Loop

 Plant input: motor torques

 Plant output: roll, pitch, yaw rate, z velocity
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Inner loop Plant

Ardrone (=seen as the plant by the outer loop)

onboard, 1000Hz
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Ardrone: Outer Control Loop

 Outer loop sees inner loop as a plant (black box)

 Plant input: roll, pitch, yaw rate, z velocity

 Plant output: 
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Inner loop PlantOuter loop

Ardrone (=seen as the plant by the outer loop)Laptop

wireless, approx. 15Hz

onboard, 1000Hz
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Mechanical Equivalent

 PD Control is equivalent to adding spring-dampers between 
the desired values and the current position
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Advanced Control Techniques

What other control techniques do exist?

 Adaptive control

 Robust control

 Optimal control

 Linear-quadratic regulator (LQR)

 Reinforcement learning

 Inverse reinforcement learning

 ... and many more
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Summary: Feedback Control

PID control is the most used control technique in practice

 P control  simple proportional control, often enough

 PI control  can compensate for bias (e.g., wind)

 PD control  can be used to reduce overshoot (e.g., when 
acceleration is controlled)

 PID control  all of the above
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Lessons Learned Today

 Probabilistic state estimation techniques

 Linear Kalman Filter, Extended KF, Unscented KF

 Efficient filtering techniques, well suited for onboard processing

 How to control a system using PID controllers

 Intuitive control laws

 Easy to implement

 Can be tricky to optimize parameters

 System simplifications: Decoupled and cascaded control
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Questions ?


