

Computer Vision Group Prof. Daniel Cremers

Practical Course: Vision-based Navigation Summer term 2015

Welcome

Dr. Jörg Stückler, Vladyslav Usenko, Jakob Engel, Prof. Dr. Daniel Cremers

Fork Lift Robots (2010)

JBT Corporation **Operation In Beverage Plan**

Vision-based Quadrotor Navigation (2011)

Autonomous Construction (2011)

Construction with Quadrotor Teams

Quentin Lindsey, Daniel Mellinger, Vijay Kumar GRASP Lab, University of Pennsylvania

Real-Time RGB-D SLAM with Quadrotors (2013)

Real-Time Camera Tracking and 3D Reconstruction Using Signed Distance Functions

Erik Bylow, Jürgen Sturm, Christian Kerl, Fredrik Kahl, Daniel Cremers

Robotics: Science and Systems (RSS) June 2013

Computer Vision Group Department of Computer Science Technical University of Munich

Real-Time SLAM with a Single Camera (2014)

LSD-SLAM: Large-Scale Direct Monocular SLAM

Jakob Engel, Thomas Schöps, Daniel Cremers ECCV 2014, Zurich

Computer Vision Group Department of Computer Science Technical University of Munich

Current Trends in Robotics

- Robot technology becomes increasingly mature for applications
- Beyond preprogrammed motions of static robot arms
- Novel application domains
 - Shop floor logistics
 - Human-robot collaboration in industrial settings
 - Domestic service robots
 - Autonomous cars
 - Aerial inspection/maintenance
- Vision sensors provide rich information
 - How to make use of it for robots?

Content of this Course

- You can gain practical experience with
 - Visual odometry and localization/state estimation
 - Vision-based Simultaneous Localization and Mapping (SLAM)
 - Vision-based control of quadrocopters or wheeled robots
- Implementation of algorithms
- Benefits/drawbacks of specific methods when applied to concrete, relevant problems
- Learn how to work in teams/on projects
- Improve your presentation skills

Available Robots in this Course

Kobuki Turtlebot 2 (2x)

Parrot AR Drone 2 (4x)

Crazyflie2 Nanocopters (2x)

Parrot Bebop (1x)

Vision-based Navigation

Course Organisation

- Course takes place during the lecture period
- Registration in TUM Online (by matched/accepted students)
- Initial phase (first 4-5 weeks): Lectures & Exercises
 - Lectures: Mondays 1pm to 3pm in seminar room 02.09.023
 - Tutored exercises: Mondays 3pm to 5pm in lab 02.05.014
 - Programming assignments will be handed out every week and checked/graded by the tutors
 - Small groups, each participant should be able to explain solution
 - Attendance to lecture & exercise sessions mandatory
- Second phase (remainder): Project
 - Work in small groups (2-3 people) on a project
 - Lab 02.05.014 available; tutors available Mondays 1pm-5pm
 - Implement a specific algorithm, which one tbd.
 - Present project outcome in talk&demo session (15min per group)
 - Written report on project outcome (10-12 pages, single column, single-spaced lines, 11 pt)

Course Requirements

- Good knowledge of the C/C++ language and basic mathematics such as linear algebra, analysis, stochastics, and numerics is required
- Prior practical knowledge in CUDA programming, robotics, and computer vision topics is a plus
- Participation in at least one of the following lectures of the TUM Computer Vision Group: Variational Methods for Computer Vision, Multiple View Geometry, Autonomous Navigation for Flying Robots. Similar lectures can also be accepted

- Micro Aerial Vehicles (MAVs) are dangerous objects
- Read the instructions carefully before you start
- Always use the protective hull
- If somebody gets injured, report to us so that we can improve safety guidelines
- If something gets damaged, report it to us so that we can fix it
- Don't fly MAVs outdoors or above persons
- NEVER TOUCH THE PROPELLORS
- DO NOT TRY TO CATCH THE QUADROCOPTER WHEN IT FAILS – LET IT FALL/CRASH!

Questions ?