Existence (lf minimizers
Let £ : R™ — R be L.s.c. and let there exist an a such that the sublevelset

So i={ueR" | E(u) < a}

is nonempty and bounded, then
4 € argmin E(u)
u

exists.

Proof. Consider a sequence (ug)y) such that E(u) — inf, E(u). (Remember that the infimum is the
largest lower bound on all possible values of E(u).)

We distinguish two cases: For a = inf, E(u) the non-emptyness of S, yields the assertion. For
a > inf,, F(u) it holds that from some sufficiently large ko on, we will have ug € S,,. Since S, is bounded
there exists a convergent subsequence uy, — . Due to the lower semi-continuity we find

i%f E(u) = kli_)rrgo E(uy) = lliglo E(uy,) > E(a).

Since by definition inf, F(u) < E(u) we obtain equality and hence there exists @ € argmin,, E(u). O

Remark: This is a fundamental strategy for showing the existence of minimizers since the arguments
do not only hold in R™ but in arbitrary topologies after replacing “bounded” by “precompact”!

Equivalence of l.s.c. and closedness
For F : R™ — R the following two statements are equivalent

e E is lower semi-continuous (l.s.c.).
e [ is closed.

Proof. Let E be closed and assume that F is not 1.s.c.Then there exists a point u® and a sequence ((uy)
with limy ux = u® such that
limkinf E(uy) < E(u°).

In particular, there exists aw € R and a subsequence ((uy, )k, such that

E(u,) < a< E) Vk (1)

Obviously, (uy,,a) € epi(E) for all k; and uy,, a) — (u°, @), but according to (1) (u°,«) ¢ epi(E), which
contradicts the closedness of E.

Now let E be ls.c. and assume that E is not closed. Then there exists a sequence (uy, ax) € epi(E)
with (ug, o) — (u°,a%) ¢ epi(E). We find

limkinf E(ug) < lillcn ap =a’ < BE(u).
On the other hand, due to E being Ls.c. we have E(u®) < liminf), E(uy), which is a contradiction. [
Convex functions are locally Lipschitz on int(dom(FE)).

As mentioned in the lecture proving this claim in 1d is an exercise for yourself to which you find a solution
below. Note that the statements holds in R”, too.

Proof. Part 1: Let x,z1, 22 € int(dom(E)) such that zy <z < zs. Then for a = ;=% we have

Z1

ary + (1 —a)rg = a(z; — x2) + 29 = .



We can compute

E(z)— E(x1) < aE(z1) + (1 — a)E(x2) — E(x1)
= (1 - a)(E(zs) — E(z1))
E(zy) — E(x1)

= (T —21).
g ( 1)

On the other hand
E(zs) — E(z) =2 E(22) — (aE(z1) + (1 — a) E(22))

= a(E(x2) — E(21))
E(x2) — E(x1)

= W(l’g — l’),
such that
B(a) ~ B(ay) _ Bles)— Bw) _ Blay) ~ E@)
T —x - To — X1 - To—2

Now for a given z € int(dom(FE)), pick a,b, 1,22 € int(dom(E)) such that a < 21 <z < 2 <b. We
claim that E is Lipschitz on |x1,22[. For any y; < ya €]x1, 22| we have

E(y2) — E(y1) _ E(b) — E(y1) < E(b) — E(x2)

< 2
Y2 — Y1 - b—y1 - b— 1z @
as well as
E(y2) — E(y1) > E(y2) — E(a) > E(zs) — E(a>. (3)
Y2 — 1 Y2 —a T2 —a
Using (2) and (3) we can conclude
E(zs) — E(a FE(b) — E(x
|E(y2) — E(y1)| < max (‘ (w2) (@) ; ( l)) (z2) )|y2—y1,
o —a — X9
such that E is Lipschitz on |z, zo]. O

Example of a convex function that is not continuous.

u ifu>0
E(u) = 1 fu=0
oo else.

Nonempty bounded subdifferential for v € int(dom(E))

We will use

Theorem 1 (Supporting Hyperplane Theorem). Let S C R™™! be a convex set and let z € dS. Then
there exists a supporting hyperplane of S which contains z.

Proof. Step 1: Show that dF(u) is nonempty for u € ri(dom(E)):
The point (u, E(u)) is on the boundary of epi(E). Thus, by the supporting hyperplane theorem there
exist 0 # (q,7) € R**! b € R such that

<m 7 [(ﬂ> <b Y(v,a) € epi(E),



_ /19 u
and b = < Lﬂ] , {E u)} > In other words,

(B )] = v

We have to exclude a vertical hyperplane, i.e. » = 0. Assume r = 0. Then
(g,v—u) <0, Yov € dom(E).
Since u € [(dom(E)) there exists an € > 0 such that u + € € dom(E) which means
cal*<0 = q¢=0

and contradicts 0 # (g, 7).
To get the “right” inequality, we have to make sure r < 0. Assume r > 0. Then v = v and « > E(u)
violates the supporting hyperplane inequality.

Thus r < 0 and we find
(£ ee]y=o oo

E(w) — E(u)+ (q/r,v —u) >0, Vv € dom(E),

which in particular means

or —q/r € 0E(u).
Step 2: Show that dF(u) is bounded. For € > 0 sufficiently small, we have

M = U {u + €€k, U — €6k~} C dom(E)
ke{l,,n}

Now let b := maxgenr E(g), and for every p € 0E(u) note that there exists a point ¢ € M with

E(q) — E(u) — (p,q —u) > 0.

=e¢|lplleo
Therefore,
b= B, BB
is a bound on the infinity norm of all elements in OF(u). O



